|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > psseq1i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) | 
| Ref | Expression | 
|---|---|
| psseq1i.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| psseq1i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | psseq1 4089 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ⊊ wpss 3951 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ne 2940 df-ss 3967 df-pss 3970 | 
| This theorem is referenced by: psseq12i 4093 | 
| Copyright terms: Public domain | W3C validator |