Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
psseq1i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | psseq1 4026 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⊊ wpss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-in 3898 df-ss 3908 df-pss 3910 |
This theorem is referenced by: psseq12i 4030 |
Copyright terms: Public domain | W3C validator |