Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
psseq1i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | psseq1 3994 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1539 ⊊ wpss 3860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-v 3412 df-in 3866 df-ss 3876 df-pss 3878 |
This theorem is referenced by: psseq12i 3998 |
Copyright terms: Public domain | W3C validator |