| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| psseq1i.1 | ⊢ 𝐴 = 𝐵 |
| psseq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| psseq12i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psseq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | psseq1i 4072 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
| 3 | psseq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | psseq2i 4073 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊊ wpss 3932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 df-ss 3948 df-pss 3951 |
| This theorem is referenced by: canthp1lem2 10672 symgvalstruct 19383 |
| Copyright terms: Public domain | W3C validator |