|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > psseq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) | 
| Ref | Expression | 
|---|---|
| psseq1i.1 | ⊢ 𝐴 = 𝐵 | 
| psseq12i.2 | ⊢ 𝐶 = 𝐷 | 
| Ref | Expression | 
|---|---|
| psseq12i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psseq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | psseq1i 4092 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) | 
| 3 | psseq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | psseq2i 4093 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) | 
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1540 ⊊ wpss 3952 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-ne 2941 df-ss 3968 df-pss 3971 | 
| This theorem is referenced by: canthp1lem2 10693 symgvalstruct 19414 symgvalstructOLD 19415 | 
| Copyright terms: Public domain | W3C validator |