Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq12i | Structured version Visualization version GIF version |
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1i.1 | ⊢ 𝐴 = 𝐵 |
psseq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
psseq12i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | psseq1i 4021 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
3 | psseq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | psseq2i 4022 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
5 | 2, 4 | bitri 278 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ⊊ wpss 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-v 3425 df-in 3891 df-ss 3901 df-pss 3903 |
This theorem is referenced by: canthp1lem2 10315 symgvalstruct 18894 symgvalstructOLD 18895 |
Copyright terms: Public domain | W3C validator |