MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq12i Structured version   Visualization version   GIF version

Theorem psseq12i 4023
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypotheses
Ref Expression
psseq1i.1 𝐴 = 𝐵
psseq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
psseq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem psseq12i
StepHypRef Expression
1 psseq1i.1 . . 3 𝐴 = 𝐵
21psseq1i 4021 . 2 (𝐴𝐶𝐵𝐶)
3 psseq12i.2 . . 3 𝐶 = 𝐷
43psseq2i 4022 . 2 (𝐵𝐶𝐵𝐷)
52, 4bitri 278 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wpss 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-in 3891  df-ss 3901  df-pss 3903
This theorem is referenced by:  canthp1lem2  10315  symgvalstruct  18894  symgvalstructOLD  18895
  Copyright terms: Public domain W3C validator