![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq12i | Structured version Visualization version GIF version |
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1i.1 | ⊢ 𝐴 = 𝐵 |
psseq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
psseq12i | ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | psseq1i 4090 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) |
3 | psseq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | psseq2i 4091 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ⊊ wpss 3950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-in 3956 df-ss 3966 df-pss 3968 |
This theorem is referenced by: canthp1lem2 10648 symgvalstruct 19264 symgvalstructOLD 19265 |
Copyright terms: Public domain | W3C validator |