Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3942 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | neeq1 3005 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | anbi12d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
4 | df-pss 3902 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
5 | df-pss 3902 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-in 3890 df-ss 3900 df-pss 3902 |
This theorem is referenced by: psseq1i 4020 psseq1d 4023 psstr 4035 sspsstr 4036 brrpssg 7556 sorpssuni 7563 pssnn 8913 pssnnOLD 8969 marypha1lem 9122 infeq5i 9324 infpss 9904 fin4i 9985 isfin2-2 10006 zornn0g 10192 ttukeylem7 10202 elnp 10674 elnpi 10675 ltprord 10717 pgpfac1lem1 19592 pgpfac1lem5 19597 pgpfac1 19598 pgpfaclem2 19600 pgpfac 19602 islbs3 20332 alexsubALTlem4 23109 wilthlem2 26123 spansncv 29916 cvbr 30545 cvcon3 30547 cvnbtwn 30549 dfon2lem3 33667 dfon2lem4 33668 dfon2lem5 33669 dfon2lem6 33670 dfon2lem7 33671 dfon2lem8 33672 dfon2 33674 lcvbr 36962 lcvnbtwn 36966 mapdcv 39601 |
Copyright terms: Public domain | W3C validator |