MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1 Structured version   Visualization version   GIF version

Theorem psseq1 4018
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1
StepHypRef Expression
1 sseq1 3942 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 neeq1 3005 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2anbi12d 630 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐴𝐶) ↔ (𝐵𝐶𝐵𝐶)))
4 df-pss 3902 . 2 (𝐴𝐶 ↔ (𝐴𝐶𝐴𝐶))
5 df-pss 3902 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵𝐶))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wne 2942  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-in 3890  df-ss 3900  df-pss 3902
This theorem is referenced by:  psseq1i  4020  psseq1d  4023  psstr  4035  sspsstr  4036  brrpssg  7556  sorpssuni  7563  pssnn  8913  pssnnOLD  8969  marypha1lem  9122  infeq5i  9324  infpss  9904  fin4i  9985  isfin2-2  10006  zornn0g  10192  ttukeylem7  10202  elnp  10674  elnpi  10675  ltprord  10717  pgpfac1lem1  19592  pgpfac1lem5  19597  pgpfac1  19598  pgpfaclem2  19600  pgpfac  19602  islbs3  20332  alexsubALTlem4  23109  wilthlem2  26123  spansncv  29916  cvbr  30545  cvcon3  30547  cvnbtwn  30549  dfon2lem3  33667  dfon2lem4  33668  dfon2lem5  33669  dfon2lem6  33670  dfon2lem7  33671  dfon2lem8  33672  dfon2  33674  lcvbr  36962  lcvnbtwn  36966  mapdcv  39601
  Copyright terms: Public domain W3C validator