| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3975 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 2 | neeq1 2988 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
| 4 | df-pss 3937 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
| 5 | df-pss 3937 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2926 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 df-ss 3934 df-pss 3937 |
| This theorem is referenced by: psseq1i 4058 psseq1d 4061 psstr 4073 sspsstr 4074 brrpssg 7704 sorpssuni 7711 pssnn 9138 marypha1lem 9391 infeq5i 9596 infpss 10176 fin4i 10258 isfin2-2 10279 zornn0g 10465 ttukeylem7 10475 elnp 10947 elnpi 10948 ltprord 10990 pgpfac1lem1 20013 pgpfac1lem5 20018 pgpfac1 20019 pgpfaclem2 20021 pgpfac 20023 islbs3 21072 alexsubALTlem4 23944 wilthlem2 26986 spansncv 31589 cvbr 32218 cvcon3 32220 cvnbtwn 32222 dfon2lem3 35780 dfon2lem4 35781 dfon2lem5 35782 dfon2lem6 35783 dfon2lem7 35784 dfon2lem8 35785 dfon2 35787 lcvbr 39021 lcvnbtwn 39025 mapdcv 41661 |
| Copyright terms: Public domain | W3C validator |