MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1 Structured version   Visualization version   GIF version

Theorem psseq1 4043
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1
StepHypRef Expression
1 sseq1 3963 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 neeq1 2987 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐴𝐶) ↔ (𝐵𝐶𝐵𝐶)))
4 df-pss 3925 . 2 (𝐴𝐶 ↔ (𝐴𝐶𝐴𝐶))
5 df-pss 3925 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  wss 3905  wpss 3906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926  df-ss 3922  df-pss 3925
This theorem is referenced by:  psseq1i  4045  psseq1d  4048  psstr  4060  sspsstr  4061  brrpssg  7665  sorpssuni  7672  pssnn  9092  marypha1lem  9342  infeq5i  9551  infpss  10129  fin4i  10211  isfin2-2  10232  zornn0g  10418  ttukeylem7  10428  elnp  10900  elnpi  10901  ltprord  10943  pgpfac1lem1  19973  pgpfac1lem5  19978  pgpfac1  19979  pgpfaclem2  19981  pgpfac  19983  islbs3  21080  alexsubALTlem4  23953  wilthlem2  26995  spansncv  31615  cvbr  32244  cvcon3  32246  cvnbtwn  32248  dfon2lem3  35758  dfon2lem4  35759  dfon2lem5  35760  dfon2lem6  35761  dfon2lem7  35762  dfon2lem8  35763  dfon2  35765  lcvbr  38999  lcvnbtwn  39003  mapdcv  41639
  Copyright terms: Public domain W3C validator