| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3956 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 2 | neeq1 2991 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
| 4 | df-pss 3918 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
| 5 | df-pss 3918 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2929 ⊆ wss 3898 ⊊ wpss 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 df-ss 3915 df-pss 3918 |
| This theorem is referenced by: psseq1i 4041 psseq1d 4044 psstr 4056 sspsstr 4057 brrpssg 7664 sorpssuni 7671 pssnn 9085 marypha1lem 9324 infeq5i 9533 infpss 10114 fin4i 10196 isfin2-2 10217 zornn0g 10403 ttukeylem7 10413 elnp 10885 elnpi 10886 ltprord 10928 pgpfac1lem1 19990 pgpfac1lem5 19995 pgpfac1 19996 pgpfaclem2 19998 pgpfac 20000 islbs3 21094 alexsubALTlem4 23966 wilthlem2 27007 spansncv 31635 cvbr 32264 cvcon3 32266 cvnbtwn 32268 dfon2lem3 35848 dfon2lem4 35849 dfon2lem5 35850 dfon2lem6 35851 dfon2lem7 35852 dfon2lem8 35853 dfon2 35855 lcvbr 39140 lcvnbtwn 39144 mapdcv 41779 nthrucw 47008 |
| Copyright terms: Public domain | W3C validator |