| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3960 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 2 | neeq1 2990 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
| 4 | df-pss 3922 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
| 5 | df-pss 3922 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2928 ⊆ wss 3902 ⊊ wpss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 df-ss 3919 df-pss 3922 |
| This theorem is referenced by: psseq1i 4042 psseq1d 4045 psstr 4057 sspsstr 4058 brrpssg 7658 sorpssuni 7665 pssnn 9078 marypha1lem 9317 infeq5i 9526 infpss 10104 fin4i 10186 isfin2-2 10207 zornn0g 10393 ttukeylem7 10403 elnp 10875 elnpi 10876 ltprord 10918 pgpfac1lem1 19986 pgpfac1lem5 19991 pgpfac1 19992 pgpfaclem2 19994 pgpfac 19996 islbs3 21090 alexsubALTlem4 23963 wilthlem2 27004 spansncv 31628 cvbr 32257 cvcon3 32259 cvnbtwn 32261 dfon2lem3 35818 dfon2lem4 35819 dfon2lem5 35820 dfon2lem6 35821 dfon2lem7 35822 dfon2lem8 35823 dfon2 35825 lcvbr 39059 lcvnbtwn 39063 mapdcv 41698 |
| Copyright terms: Public domain | W3C validator |