![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4008 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | neeq1 3001 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | anbi12d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
4 | df-pss 3968 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
5 | df-pss 3968 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ≠ wne 2938 ⊆ wss 3949 ⊊ wpss 3950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-in 3956 df-ss 3966 df-pss 3968 |
This theorem is referenced by: psseq1i 4090 psseq1d 4093 psstr 4105 sspsstr 4106 brrpssg 7719 sorpssuni 7726 pssnn 9172 pssnnOLD 9269 marypha1lem 9432 infeq5i 9635 infpss 10216 fin4i 10297 isfin2-2 10318 zornn0g 10504 ttukeylem7 10514 elnp 10986 elnpi 10987 ltprord 11029 pgpfac1lem1 19987 pgpfac1lem5 19992 pgpfac1 19993 pgpfaclem2 19995 pgpfac 19997 islbs3 20915 alexsubALTlem4 23776 wilthlem2 26807 spansncv 31171 cvbr 31800 cvcon3 31802 cvnbtwn 31804 dfon2lem3 35059 dfon2lem4 35060 dfon2lem5 35061 dfon2lem6 35062 dfon2lem7 35063 dfon2lem8 35064 dfon2 35066 lcvbr 38196 lcvnbtwn 38200 mapdcv 40836 |
Copyright terms: Public domain | W3C validator |