MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1 Structured version   Visualization version   GIF version

Theorem psseq1 4065
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1
StepHypRef Expression
1 sseq1 3984 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 neeq1 2994 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐴𝐶) ↔ (𝐵𝐶𝐵𝐶)))
4 df-pss 3946 . 2 (𝐴𝐶 ↔ (𝐴𝐶𝐴𝐶))
5 df-pss 3946 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2932  wss 3926  wpss 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ne 2933  df-ss 3943  df-pss 3946
This theorem is referenced by:  psseq1i  4067  psseq1d  4070  psstr  4082  sspsstr  4083  brrpssg  7717  sorpssuni  7724  pssnn  9180  marypha1lem  9443  infeq5i  9648  infpss  10228  fin4i  10310  isfin2-2  10331  zornn0g  10517  ttukeylem7  10527  elnp  10999  elnpi  11000  ltprord  11042  pgpfac1lem1  20055  pgpfac1lem5  20060  pgpfac1  20061  pgpfaclem2  20063  pgpfac  20065  islbs3  21114  alexsubALTlem4  23986  wilthlem2  27029  spansncv  31580  cvbr  32209  cvcon3  32211  cvnbtwn  32213  dfon2lem3  35749  dfon2lem4  35750  dfon2lem5  35751  dfon2lem6  35752  dfon2lem7  35753  dfon2lem8  35754  dfon2  35756  lcvbr  38985  lcvnbtwn  38989  mapdcv  41625
  Copyright terms: Public domain W3C validator