MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1 Structured version   Visualization version   GIF version

Theorem psseq1 4088
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1
StepHypRef Expression
1 sseq1 4008 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 neeq1 3001 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2anbi12d 629 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐴𝐶) ↔ (𝐵𝐶𝐵𝐶)))
4 df-pss 3968 . 2 (𝐴𝐶 ↔ (𝐴𝐶𝐴𝐶))
5 df-pss 3968 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵𝐶))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wne 2938  wss 3949  wpss 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-v 3474  df-in 3956  df-ss 3966  df-pss 3968
This theorem is referenced by:  psseq1i  4090  psseq1d  4093  psstr  4105  sspsstr  4106  brrpssg  7719  sorpssuni  7726  pssnn  9172  pssnnOLD  9269  marypha1lem  9432  infeq5i  9635  infpss  10216  fin4i  10297  isfin2-2  10318  zornn0g  10504  ttukeylem7  10514  elnp  10986  elnpi  10987  ltprord  11029  pgpfac1lem1  19987  pgpfac1lem5  19992  pgpfac1  19993  pgpfaclem2  19995  pgpfac  19997  islbs3  20915  alexsubALTlem4  23776  wilthlem2  26807  spansncv  31171  cvbr  31800  cvcon3  31802  cvnbtwn  31804  dfon2lem3  35059  dfon2lem4  35060  dfon2lem5  35061  dfon2lem6  35062  dfon2lem7  35063  dfon2lem8  35064  dfon2  35066  lcvbr  38196  lcvnbtwn  38200  mapdcv  40836
  Copyright terms: Public domain W3C validator