MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1 Structured version   Visualization version   GIF version

Theorem psseq1 4053
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem psseq1
StepHypRef Expression
1 sseq1 3972 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 neeq1 2987 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐴𝐶) ↔ (𝐵𝐶𝐵𝐶)))
4 df-pss 3934 . 2 (𝐴𝐶 ↔ (𝐴𝐶𝐴𝐶))
5 df-pss 3934 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926  df-ss 3931  df-pss 3934
This theorem is referenced by:  psseq1i  4055  psseq1d  4058  psstr  4070  sspsstr  4071  brrpssg  7701  sorpssuni  7708  pssnn  9132  marypha1lem  9384  infeq5i  9589  infpss  10169  fin4i  10251  isfin2-2  10272  zornn0g  10458  ttukeylem7  10468  elnp  10940  elnpi  10941  ltprord  10983  pgpfac1lem1  20006  pgpfac1lem5  20011  pgpfac1  20012  pgpfaclem2  20014  pgpfac  20016  islbs3  21065  alexsubALTlem4  23937  wilthlem2  26979  spansncv  31582  cvbr  32211  cvcon3  32213  cvnbtwn  32215  dfon2lem3  35773  dfon2lem4  35774  dfon2lem5  35775  dfon2lem6  35776  dfon2lem7  35777  dfon2lem8  35778  dfon2  35780  lcvbr  39014  lcvnbtwn  39018  mapdcv  41654
  Copyright terms: Public domain W3C validator