| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3963 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 2 | neeq1 2987 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
| 4 | df-pss 3925 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
| 5 | df-pss 3925 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3905 ⊊ wpss 3906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 df-ss 3922 df-pss 3925 |
| This theorem is referenced by: psseq1i 4045 psseq1d 4048 psstr 4060 sspsstr 4061 brrpssg 7665 sorpssuni 7672 pssnn 9092 marypha1lem 9342 infeq5i 9551 infpss 10129 fin4i 10211 isfin2-2 10232 zornn0g 10418 ttukeylem7 10428 elnp 10900 elnpi 10901 ltprord 10943 pgpfac1lem1 19973 pgpfac1lem5 19978 pgpfac1 19979 pgpfaclem2 19981 pgpfac 19983 islbs3 21080 alexsubALTlem4 23953 wilthlem2 26995 spansncv 31615 cvbr 32244 cvcon3 32246 cvnbtwn 32248 dfon2lem3 35758 dfon2lem4 35759 dfon2lem5 35760 dfon2lem6 35761 dfon2lem7 35762 dfon2lem8 35763 dfon2 35765 lcvbr 38999 lcvnbtwn 39003 mapdcv 41639 |
| Copyright terms: Public domain | W3C validator |