![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3884 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | neeq1 3029 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | anbi12d 621 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
4 | df-pss 3847 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
5 | df-pss 3847 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ≠ wne 2967 ⊆ wss 3831 ⊊ wpss 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-ne 2968 df-in 3838 df-ss 3845 df-pss 3847 |
This theorem is referenced by: psseq1i 3958 psseq1d 3961 psstr 3973 sspsstr 3974 brrpssg 7271 sorpssuni 7278 pssnn 8533 marypha1lem 8694 infeq5i 8895 infpss 9439 fin4i 9520 isfin2-2 9541 zornn0g 9727 ttukeylem7 9737 elnp 10209 elnpi 10210 ltprord 10252 pgpfac1lem1 18949 pgpfac1lem5 18954 pgpfac1 18955 pgpfaclem2 18957 pgpfac 18959 islbs3 19652 alexsubALTlem4 22365 wilthlem2 25351 spansncv 29214 cvbr 29843 cvcon3 29845 cvnbtwn 29847 dfon2lem3 32550 dfon2lem4 32551 dfon2lem5 32552 dfon2lem6 32553 dfon2lem7 32554 dfon2lem8 32555 dfon2 32557 lcvbr 35602 lcvnbtwn 35606 mapdcv 38241 |
Copyright terms: Public domain | W3C validator |