Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3960 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | neeq1 3004 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
4 | df-pss 3920 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
5 | df-pss 3920 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ≠ wne 2941 ⊆ wss 3901 ⊊ wpss 3902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-v 3444 df-in 3908 df-ss 3918 df-pss 3920 |
This theorem is referenced by: psseq1i 4040 psseq1d 4043 psstr 4055 sspsstr 4056 brrpssg 7644 sorpssuni 7651 pssnn 9037 pssnnOLD 9134 marypha1lem 9294 infeq5i 9497 infpss 10078 fin4i 10159 isfin2-2 10180 zornn0g 10366 ttukeylem7 10376 elnp 10848 elnpi 10849 ltprord 10891 pgpfac1lem1 19771 pgpfac1lem5 19776 pgpfac1 19777 pgpfaclem2 19779 pgpfac 19781 islbs3 20522 alexsubALTlem4 23306 wilthlem2 26323 spansncv 30302 cvbr 30931 cvcon3 30933 cvnbtwn 30935 dfon2lem3 34044 dfon2lem4 34045 dfon2lem5 34046 dfon2lem6 34047 dfon2lem7 34048 dfon2lem8 34049 dfon2 34051 lcvbr 37339 lcvnbtwn 37343 mapdcv 39979 |
Copyright terms: Public domain | W3C validator |