![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
psseq2i | ⊢ (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | psseq2 3892 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ⊊ wpss 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ne 2972 df-in 3776 df-ss 3783 df-pss 3785 |
This theorem is referenced by: psseq12i 3895 disjpss 4223 infeq5i 8783 |
Copyright terms: Public domain | W3C validator |