MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2i Structured version   Visualization version   GIF version

Theorem psseq2i 4116
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
psseq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem psseq2i
StepHypRef Expression
1 psseq1i.1 . 2 𝐴 = 𝐵
2 psseq2 4114 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947  df-ss 3993  df-pss 3996
This theorem is referenced by:  psseq12i  4117  disjpss  4484  infeq5i  9705
  Copyright terms: Public domain W3C validator