MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4040
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3957 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 2992 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3918 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3918 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wne 2929  wss 3898  wpss 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-ne 2930  df-ss 3915  df-pss 3918
This theorem is referenced by:  psseq2i  4042  psseq2d  4045  psssstr  4058  brrpssg  7664  sorpssint  7672  pssnn  9085  php  9123  isfin4  10195  fin2i2  10216  elnp  10885  elnpi  10886  ltprord  10928  pgpfac1lem1  19990  pgpfac1lem5  19995  lbsextlem4  21100  alexsubALTlem4  23966  spansncv  31635  cvbr  32264  cvcon3  32266  cvnbtwn  32268  cvbr4i  32349  ssdifidlprm  33430  ssmxidl  33446  dfon2lem6  35851  dfon2lem7  35852  dfon2lem8  35853  dfon2  35855  lcvbr  39140  lcvnbtwn  39144  lsatcv0  39150  lsat0cv  39152  islshpcv  39172  mapdcv  41779  pssn0  42345  nthrucw  47008
  Copyright terms: Public domain W3C validator