| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3973 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 2 | neeq2 2988 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
| 4 | df-pss 3934 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
| 5 | df-pss 3934 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3914 ⊊ wpss 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 df-ss 3931 df-pss 3934 |
| This theorem is referenced by: psseq2i 4056 psseq2d 4059 psssstr 4072 brrpssg 7701 sorpssint 7709 pssnn 9132 php 9171 isfin4 10250 fin2i2 10271 elnp 10940 elnpi 10941 ltprord 10983 pgpfac1lem1 20006 pgpfac1lem5 20011 lbsextlem4 21071 alexsubALTlem4 23937 spansncv 31582 cvbr 32211 cvcon3 32213 cvnbtwn 32215 cvbr4i 32296 ssdifidlprm 33429 ssmxidl 33445 dfon2lem6 35776 dfon2lem7 35777 dfon2lem8 35778 dfon2 35780 lcvbr 39014 lcvnbtwn 39018 lsatcv0 39024 lsat0cv 39026 islshpcv 39046 mapdcv 41654 pssn0 42215 |
| Copyright terms: Public domain | W3C validator |