MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4019
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3943 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 3006 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 630 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3902 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3902 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wne 2942  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-in 3890  df-ss 3900  df-pss 3902
This theorem is referenced by:  psseq2i  4021  psseq2d  4024  psssstr  4037  brrpssg  7556  sorpssint  7564  php  8897  php2  8898  pssnn  8913  pssnnOLD  8969  isfin4  9984  fin2i2  10005  elnp  10674  elnpi  10675  ltprord  10717  pgpfac1lem1  19592  pgpfac1lem5  19597  lbsextlem4  20338  alexsubALTlem4  23109  spansncv  29916  cvbr  30545  cvcon3  30547  cvnbtwn  30549  cvbr4i  30630  ssmxidl  31544  dfon2lem6  33670  dfon2lem7  33671  dfon2lem8  33672  dfon2  33674  lcvbr  36962  lcvnbtwn  36966  lsatcv0  36972  lsat0cv  36974  islshpcv  36994  mapdcv  39601  pssn0  40128
  Copyright terms: Public domain W3C validator