MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4057
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3976 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 2989 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3937 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3937 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2926  wss 3917  wpss 3918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ne 2927  df-ss 3934  df-pss 3937
This theorem is referenced by:  psseq2i  4059  psseq2d  4062  psssstr  4075  brrpssg  7704  sorpssint  7712  pssnn  9138  php  9177  isfin4  10257  fin2i2  10278  elnp  10947  elnpi  10948  ltprord  10990  pgpfac1lem1  20013  pgpfac1lem5  20018  lbsextlem4  21078  alexsubALTlem4  23944  spansncv  31589  cvbr  32218  cvcon3  32220  cvnbtwn  32222  cvbr4i  32303  ssdifidlprm  33436  ssmxidl  33452  dfon2lem6  35783  dfon2lem7  35784  dfon2lem8  35785  dfon2  35787  lcvbr  39021  lcvnbtwn  39025  lsatcv0  39031  lsat0cv  39033  islshpcv  39053  mapdcv  41661  pssn0  42222
  Copyright terms: Public domain W3C validator