MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4088
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 4008 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 3004 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3967 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3967 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wne 2940  wss 3948  wpss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-in 3955  df-ss 3965  df-pss 3967
This theorem is referenced by:  psseq2i  4090  psseq2d  4093  psssstr  4106  brrpssg  7717  sorpssint  7725  pssnn  9170  php  9212  phpOLD  9224  php2OLD  9225  pssnnOLD  9267  isfin4  10294  fin2i2  10315  elnp  10984  elnpi  10985  ltprord  11027  pgpfac1lem1  19985  pgpfac1lem5  19990  lbsextlem4  20919  alexsubALTlem4  23774  spansncv  31161  cvbr  31790  cvcon3  31792  cvnbtwn  31794  cvbr4i  31875  ssmxidl  32852  dfon2lem6  35052  dfon2lem7  35053  dfon2lem8  35054  dfon2  35056  lcvbr  38194  lcvnbtwn  38198  lsatcv0  38204  lsat0cv  38206  islshpcv  38226  mapdcv  40834  pssn0  41351
  Copyright terms: Public domain W3C validator