| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3985 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 2 | neeq2 2995 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
| 4 | df-pss 3946 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
| 5 | df-pss 3946 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2932 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 df-ss 3943 df-pss 3946 |
| This theorem is referenced by: psseq2i 4068 psseq2d 4071 psssstr 4084 brrpssg 7719 sorpssint 7727 pssnn 9182 php 9221 phpOLD 9231 php2OLD 9232 isfin4 10311 fin2i2 10332 elnp 11001 elnpi 11002 ltprord 11044 pgpfac1lem1 20057 pgpfac1lem5 20062 lbsextlem4 21122 alexsubALTlem4 23988 spansncv 31634 cvbr 32263 cvcon3 32265 cvnbtwn 32267 cvbr4i 32348 ssdifidlprm 33473 ssmxidl 33489 dfon2lem6 35806 dfon2lem7 35807 dfon2lem8 35808 dfon2 35810 lcvbr 39039 lcvnbtwn 39043 lsatcv0 39049 lsat0cv 39051 islshpcv 39071 mapdcv 41679 pssn0 42278 |
| Copyright terms: Public domain | W3C validator |