MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4023
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3947 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 3007 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3906 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3906 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wne 2943  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-in 3894  df-ss 3904  df-pss 3906
This theorem is referenced by:  psseq2i  4025  psseq2d  4028  psssstr  4041  brrpssg  7578  sorpssint  7586  pssnn  8951  php  8993  phpOLD  9005  php2OLD  9006  pssnnOLD  9040  isfin4  10053  fin2i2  10074  elnp  10743  elnpi  10744  ltprord  10786  pgpfac1lem1  19677  pgpfac1lem5  19682  lbsextlem4  20423  alexsubALTlem4  23201  spansncv  30015  cvbr  30644  cvcon3  30646  cvnbtwn  30648  cvbr4i  30729  ssmxidl  31642  dfon2lem6  33764  dfon2lem7  33765  dfon2lem8  33766  dfon2  33768  lcvbr  37035  lcvnbtwn  37039  lsatcv0  37045  lsat0cv  37047  islshpcv  37067  mapdcv  39674  pssn0  40202
  Copyright terms: Public domain W3C validator