MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4066
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3985 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 2995 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3946 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3946 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2932  wss 3926  wpss 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ne 2933  df-ss 3943  df-pss 3946
This theorem is referenced by:  psseq2i  4068  psseq2d  4071  psssstr  4084  brrpssg  7717  sorpssint  7725  pssnn  9180  php  9219  phpOLD  9229  php2OLD  9230  isfin4  10309  fin2i2  10330  elnp  10999  elnpi  11000  ltprord  11042  pgpfac1lem1  20055  pgpfac1lem5  20060  lbsextlem4  21120  alexsubALTlem4  23986  spansncv  31580  cvbr  32209  cvcon3  32211  cvnbtwn  32213  cvbr4i  32294  ssdifidlprm  33419  ssmxidl  33435  dfon2lem6  35752  dfon2lem7  35753  dfon2lem8  35754  dfon2  35756  lcvbr  38985  lcvnbtwn  38989  lsatcv0  38995  lsat0cv  38997  islshpcv  39017  mapdcv  41625  pssn0  42224
  Copyright terms: Public domain W3C validator