Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3927 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
2 | neeq2 3004 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
3 | 1, 2 | anbi12d 634 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
4 | df-pss 3885 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
5 | df-pss 3885 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ≠ wne 2940 ⊆ wss 3866 ⊊ wpss 3867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3410 df-in 3873 df-ss 3883 df-pss 3885 |
This theorem is referenced by: psseq2i 4005 psseq2d 4008 psssstr 4021 brrpssg 7513 sorpssint 7521 php 8830 php2 8831 pssnn 8846 pssnnOLD 8895 isfin4 9911 fin2i2 9932 elnp 10601 elnpi 10602 ltprord 10644 pgpfac1lem1 19461 pgpfac1lem5 19466 lbsextlem4 20198 alexsubALTlem4 22947 spansncv 29734 cvbr 30363 cvcon3 30365 cvnbtwn 30367 cvbr4i 30448 ssmxidl 31356 dfon2lem6 33483 dfon2lem7 33484 dfon2lem8 33485 dfon2 33487 lcvbr 36772 lcvnbtwn 36776 lsatcv0 36782 lsat0cv 36784 islshpcv 36804 mapdcv 39411 pssn0 39915 |
Copyright terms: Public domain | W3C validator |