| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3957 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 2 | neeq2 2992 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
| 4 | df-pss 3918 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
| 5 | df-pss 3918 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2929 ⊆ wss 3898 ⊊ wpss 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 df-ss 3915 df-pss 3918 |
| This theorem is referenced by: psseq2i 4042 psseq2d 4045 psssstr 4058 brrpssg 7664 sorpssint 7672 pssnn 9085 php 9123 isfin4 10195 fin2i2 10216 elnp 10885 elnpi 10886 ltprord 10928 pgpfac1lem1 19990 pgpfac1lem5 19995 lbsextlem4 21100 alexsubALTlem4 23966 spansncv 31635 cvbr 32264 cvcon3 32266 cvnbtwn 32268 cvbr4i 32349 ssdifidlprm 33430 ssmxidl 33446 dfon2lem6 35851 dfon2lem7 35852 dfon2lem8 35853 dfon2 35855 lcvbr 39140 lcvnbtwn 39144 lsatcv0 39150 lsat0cv 39152 islshpcv 39172 mapdcv 41779 pssn0 42345 nthrucw 47008 |
| Copyright terms: Public domain | W3C validator |