| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3961 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 2 | neeq2 2991 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
| 4 | df-pss 3922 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
| 5 | df-pss 3922 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2928 ⊆ wss 3902 ⊊ wpss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 df-ss 3919 df-pss 3922 |
| This theorem is referenced by: psseq2i 4043 psseq2d 4046 psssstr 4059 brrpssg 7658 sorpssint 7666 pssnn 9078 php 9116 isfin4 10185 fin2i2 10206 elnp 10875 elnpi 10876 ltprord 10918 pgpfac1lem1 19986 pgpfac1lem5 19991 lbsextlem4 21096 alexsubALTlem4 23963 spansncv 31628 cvbr 32257 cvcon3 32259 cvnbtwn 32261 cvbr4i 32342 ssdifidlprm 33418 ssmxidl 33434 dfon2lem6 35821 dfon2lem7 35822 dfon2lem8 35823 dfon2 35825 lcvbr 39059 lcvnbtwn 39063 lsatcv0 39069 lsat0cv 39071 islshpcv 39091 mapdcv 41698 pssn0 42259 |
| Copyright terms: Public domain | W3C validator |