MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4114
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 4035 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 3010 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3996 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3996 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wne 2946  wss 3976  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947  df-ss 3993  df-pss 3996
This theorem is referenced by:  psseq2i  4116  psseq2d  4119  psssstr  4132  brrpssg  7760  sorpssint  7768  pssnn  9234  php  9273  phpOLD  9285  php2OLD  9286  isfin4  10366  fin2i2  10387  elnp  11056  elnpi  11057  ltprord  11099  pgpfac1lem1  20118  pgpfac1lem5  20123  lbsextlem4  21186  alexsubALTlem4  24079  spansncv  31685  cvbr  32314  cvcon3  32316  cvnbtwn  32318  cvbr4i  32399  ssdifidlprm  33451  ssmxidl  33467  dfon2lem6  35752  dfon2lem7  35753  dfon2lem8  35754  dfon2  35756  lcvbr  38977  lcvnbtwn  38981  lsatcv0  38987  lsat0cv  38989  islshpcv  39009  mapdcv  41617  pssn0  42220
  Copyright terms: Public domain W3C validator