![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4035 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
2 | neeq2 3010 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
3 | 1, 2 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
4 | df-pss 3996 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
5 | df-pss 3996 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2946 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 df-ss 3993 df-pss 3996 |
This theorem is referenced by: psseq2i 4116 psseq2d 4119 psssstr 4132 brrpssg 7760 sorpssint 7768 pssnn 9234 php 9273 phpOLD 9285 php2OLD 9286 isfin4 10366 fin2i2 10387 elnp 11056 elnpi 11057 ltprord 11099 pgpfac1lem1 20118 pgpfac1lem5 20123 lbsextlem4 21186 alexsubALTlem4 24079 spansncv 31685 cvbr 32314 cvcon3 32316 cvnbtwn 32318 cvbr4i 32399 ssdifidlprm 33451 ssmxidl 33467 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon2 35756 lcvbr 38977 lcvnbtwn 38981 lsatcv0 38987 lsat0cv 38989 islshpcv 39009 mapdcv 41617 pssn0 42220 |
Copyright terms: Public domain | W3C validator |