![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4007 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
2 | neeq2 3004 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
3 | 1, 2 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵))) |
4 | df-pss 3966 | . 2 ⊢ (𝐶 ⊊ 𝐴 ↔ (𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴)) | |
5 | df-pss 3966 | . 2 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ≠ wne 2940 ⊆ wss 3947 ⊊ wpss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-in 3954 df-ss 3964 df-pss 3966 |
This theorem is referenced by: psseq2i 4089 psseq2d 4092 psssstr 4105 brrpssg 7711 sorpssint 7719 pssnn 9164 php 9206 phpOLD 9218 php2OLD 9219 pssnnOLD 9261 isfin4 10288 fin2i2 10309 elnp 10978 elnpi 10979 ltprord 11021 pgpfac1lem1 19938 pgpfac1lem5 19943 lbsextlem4 20766 alexsubALTlem4 23545 spansncv 30893 cvbr 31522 cvcon3 31524 cvnbtwn 31526 cvbr4i 31607 ssmxidl 32578 dfon2lem6 34748 dfon2lem7 34749 dfon2lem8 34750 dfon2 34752 lcvbr 37879 lcvnbtwn 37883 lsatcv0 37889 lsat0cv 37891 islshpcv 37911 mapdcv 40519 pssn0 41041 |
Copyright terms: Public domain | W3C validator |