MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4054
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3973 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 2988 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3934 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3934 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926  df-ss 3931  df-pss 3934
This theorem is referenced by:  psseq2i  4056  psseq2d  4059  psssstr  4072  brrpssg  7701  sorpssint  7709  pssnn  9132  php  9171  isfin4  10250  fin2i2  10271  elnp  10940  elnpi  10941  ltprord  10983  pgpfac1lem1  20006  pgpfac1lem5  20011  lbsextlem4  21071  alexsubALTlem4  23937  spansncv  31582  cvbr  32211  cvcon3  32213  cvnbtwn  32215  cvbr4i  32296  ssdifidlprm  33429  ssmxidl  33445  dfon2lem6  35776  dfon2lem7  35777  dfon2lem8  35778  dfon2  35780  lcvbr  39014  lcvnbtwn  39018  lsatcv0  39024  lsat0cv  39026  islshpcv  39046  mapdcv  41654  pssn0  42215
  Copyright terms: Public domain W3C validator