MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2 Structured version   Visualization version   GIF version

Theorem psseq2 4066
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3985 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 neeq2 2995 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐶𝐴𝐶𝐴) ↔ (𝐶𝐵𝐶𝐵)))
4 df-pss 3946 . 2 (𝐶𝐴 ↔ (𝐶𝐴𝐶𝐴))
5 df-pss 3946 . 2 (𝐶𝐵 ↔ (𝐶𝐵𝐶𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2932  wss 3926  wpss 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ne 2933  df-ss 3943  df-pss 3946
This theorem is referenced by:  psseq2i  4068  psseq2d  4071  psssstr  4084  brrpssg  7719  sorpssint  7727  pssnn  9182  php  9221  phpOLD  9231  php2OLD  9232  isfin4  10311  fin2i2  10332  elnp  11001  elnpi  11002  ltprord  11044  pgpfac1lem1  20057  pgpfac1lem5  20062  lbsextlem4  21122  alexsubALTlem4  23988  spansncv  31634  cvbr  32263  cvcon3  32265  cvnbtwn  32267  cvbr4i  32348  ssdifidlprm  33473  ssmxidl  33489  dfon2lem6  35806  dfon2lem7  35807  dfon2lem8  35808  dfon2  35810  lcvbr  39039  lcvnbtwn  39043  lsatcv0  39049  lsat0cv  39051  islshpcv  39071  mapdcv  41679  pssn0  42278
  Copyright terms: Public domain W3C validator