Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssnssi | Structured version Visualization version GIF version |
Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pssnssi.1 | ⊢ 𝐴 ⊊ 𝐵 |
Ref | Expression |
---|---|
pssnssi | ⊢ ¬ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnssi.1 | . . 3 ⊢ 𝐴 ⊊ 𝐵 | |
2 | dfpss3 4017 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) |
4 | 3 | simpri 485 | 1 ⊢ ¬ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-in 3890 df-ss 3900 df-pss 3902 |
This theorem is referenced by: nsssmfmbf 44201 |
Copyright terms: Public domain | W3C validator |