![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssnssi | Structured version Visualization version GIF version |
Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pssnssi.1 | ⊢ 𝐴 ⊊ 𝐵 |
Ref | Expression |
---|---|
pssnssi | ⊢ ¬ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnssi.1 | . . 3 ⊢ 𝐴 ⊊ 𝐵 | |
2 | dfpss3 4112 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) |
4 | 3 | simpri 485 | 1 ⊢ ¬ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 df-ss 3993 df-pss 3996 |
This theorem is referenced by: nsssmfmbf 46700 |
Copyright terms: Public domain | W3C validator |