Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pssnssi | Structured version Visualization version GIF version |
Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pssnssi.1 | ⊢ 𝐴 ⊊ 𝐵 |
Ref | Expression |
---|---|
pssnssi | ⊢ ¬ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnssi.1 | . . 3 ⊢ 𝐴 ⊊ 𝐵 | |
2 | dfpss3 4021 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) |
4 | 3 | simpri 486 | 1 ⊢ ¬ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ⊆ wss 3887 ⊊ wpss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-in 3894 df-ss 3904 df-pss 3906 |
This theorem is referenced by: nsssmfmbf 44314 |
Copyright terms: Public domain | W3C validator |