Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pssnssi Structured version   Visualization version   GIF version

Theorem pssnssi 45003
Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
pssnssi.1 𝐴𝐵
Assertion
Ref Expression
pssnssi ¬ 𝐵𝐴

Proof of Theorem pssnssi
StepHypRef Expression
1 pssnssi.1 . . 3 𝐴𝐵
2 dfpss3 4112 . . 3 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
31, 2mpbi 230 . 2 (𝐴𝐵 ∧ ¬ 𝐵𝐴)
43simpri 485 1 ¬ 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wss 3976  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947  df-ss 3993  df-pss 3996
This theorem is referenced by:  nsssmfmbf  46700
  Copyright terms: Public domain W3C validator