| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pssnssi | Structured version Visualization version GIF version | ||
| Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pssnssi.1 | ⊢ 𝐴 ⊊ 𝐵 |
| Ref | Expression |
|---|---|
| pssnssi | ⊢ ¬ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssnssi.1 | . . 3 ⊢ 𝐴 ⊊ 𝐵 | |
| 2 | dfpss3 4071 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) |
| 4 | 3 | simpri 485 | 1 ⊢ ¬ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ⊆ wss 3933 ⊊ wpss 3934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ne 2932 df-ss 3950 df-pss 3953 |
| This theorem is referenced by: nsssmfmbf 46739 |
| Copyright terms: Public domain | W3C validator |