Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssabf Structured version   Visualization version   GIF version

Theorem ssabf 43779
Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ssabf.1 𝑥𝐴
Assertion
Ref Expression
ssabf (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))

Proof of Theorem ssabf
StepHypRef Expression
1 ssabf.1 . . . 4 𝑥𝐴
21abid2f 2936 . . 3 {𝑥𝑥𝐴} = 𝐴
32sseq1i 4010 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ 𝐴 ⊆ {𝑥𝜑})
4 ss2ab 4056 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
53, 4bitr3i 276 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2106  {cab 2709  wnfc 2883  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  ssrabf  43793
  Copyright terms: Public domain W3C validator