Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssabf Structured version   Visualization version   GIF version

Theorem ssabf 45110
Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ssabf.1 𝑥𝐴
Assertion
Ref Expression
ssabf (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))

Proof of Theorem ssabf
StepHypRef Expression
1 ssabf.1 . . . 4 𝑥𝐴
21abid2f 2935 . . 3 {𝑥𝑥𝐴} = 𝐴
32sseq1i 4011 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ 𝐴 ⊆ {𝑥𝜑})
4 ss2ab 4061 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
53, 4bitr3i 277 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wcel 2107  {cab 2713  wnfc 2889  wss 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ss 3967
This theorem is referenced by:  ssrabf  45124
  Copyright terms: Public domain W3C validator