| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssabf | Structured version Visualization version GIF version | ||
| Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ssabf.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ssabf | ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | abid2f 2935 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| 3 | 2 | sseq1i 4011 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ 𝐴 ⊆ {𝑥 ∣ 𝜑}) |
| 4 | ss2ab 4061 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 5 | 3, 4 | bitr3i 277 | 1 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 {cab 2713 Ⅎwnfc 2889 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ss 3967 |
| This theorem is referenced by: ssrabf 45124 |
| Copyright terms: Public domain | W3C validator |