| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssabf | Structured version Visualization version GIF version | ||
| Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ssabf.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ssabf | ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | abid2f 2930 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| 3 | 2 | sseq1i 3992 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ 𝐴 ⊆ {𝑥 ∣ 𝜑}) |
| 4 | ss2ab 4042 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 5 | 3, 4 | bitr3i 277 | 1 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ss 3948 |
| This theorem is referenced by: ssrabf 45105 |
| Copyright terms: Public domain | W3C validator |