Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabidim2 Structured version   Visualization version   GIF version

Theorem rabidim2 45004
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
rabidim2 (𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)

Proof of Theorem rabidim2
StepHypRef Expression
1 rabid 3465 . 2 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21simprbi 496 1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {crab 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444
This theorem is referenced by:  infnsuprnmpt  45159  preimagelt  46620  preimalegt  46621  pimrecltpos  46629  pimiooltgt  46631  pimrecltneg  46645  smfaddlem1  46684  smflimlem2  46693  smfrec  46710  smfmullem4  46715  smfdiv  46718  smfsupxr  46737  smfinflem  46738  smflimsuplem7  46747  smflimsuplem8  46748  fsupdm  46763  finfdm  46767
  Copyright terms: Public domain W3C validator