| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabidim2 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabidim2 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3424 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: infnsuprnmpt 45217 preimagelt 46670 preimalegt 46671 pimrecltpos 46679 pimiooltgt 46681 pimrecltneg 46695 smfaddlem1 46734 smflimlem2 46743 smfrec 46760 smfmullem4 46765 smfdiv 46768 smfsupxr 46787 smfinflem 46788 smflimsuplem7 46797 smflimsuplem8 46798 fsupdm 46813 finfdm 46817 |
| Copyright terms: Public domain | W3C validator |