Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabidim2 | Structured version Visualization version GIF version |
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabidim2 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3322 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | simprbi 498 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 {crab 3284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 |
This theorem is referenced by: infnsuprnmpt 42841 preimagelt 44287 preimalegt 44288 pimrecltpos 44296 pimiooltgt 44298 pimrecltneg 44312 smfaddlem1 44351 smflimlem2 44360 smfrec 44377 smfmullem4 44382 smfdiv 44385 smfsupxr 44403 smfinflem 44404 smflimsuplem7 44413 smflimsuplem8 44414 |
Copyright terms: Public domain | W3C validator |