| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabidim2 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabidim2 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3416 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: infnsuprnmpt 45295 preimagelt 46745 preimalegt 46746 pimrecltpos 46754 pimiooltgt 46756 pimrecltneg 46770 smfaddlem1 46809 smflimlem2 46818 smfrec 46835 smfmullem4 46840 smfdiv 46843 smfsupxr 46862 smfinflem 46863 smflimsuplem7 46872 smflimsuplem8 46873 fsupdm 46888 finfdm 46892 |
| Copyright terms: Public domain | W3C validator |