![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabidim2 | Structured version Visualization version GIF version |
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabidim2 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3451 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {crab 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 |
This theorem is referenced by: infnsuprnmpt 44412 preimagelt 45873 preimalegt 45874 pimrecltpos 45882 pimiooltgt 45884 pimrecltneg 45898 smfaddlem1 45937 smflimlem2 45946 smfrec 45963 smfmullem4 45968 smfdiv 45971 smfsupxr 45990 smfinflem 45991 smflimsuplem7 46000 smflimsuplem8 46001 fsupdm 46016 finfdm 46020 |
Copyright terms: Public domain | W3C validator |