![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpss3 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfpss3 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 4083 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
2 | eqss 3995 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | 2 | baib 537 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
4 | 3 | notbid 318 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵 ⊆ 𝐴)) |
5 | 4 | pm5.32i 576 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
6 | 1, 5 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 = wceq 1542 ⊆ wss 3946 ⊊ wpss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-in 3953 df-ss 3963 df-pss 3965 |
This theorem is referenced by: pssirr 4098 pssn2lp 4099 ssnpss 4101 nsspssun 4255 pssdifcom1 4487 pssdifcom2 4488 php3 9207 php3OLD 9219 fincssdom 10313 reclem2pr 11038 ressval3d 17186 ressval3dOLD 17187 islbs3 20755 sltlpss 27380 chpsscon3 30733 chpssati 31593 fundmpss 34675 lpssat 37820 lssat 37823 dihglblem6 40148 pssnssi 43722 mbfpsssmf 45433 |
Copyright terms: Public domain | W3C validator |