MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss3 Structured version   Visualization version   GIF version

Theorem dfpss3 4052
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfpss3 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem dfpss3
StepHypRef Expression
1 dfpss2 4051 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 eqss 3962 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32baib 535 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵𝐵𝐴))
43notbid 318 . . 3 (𝐴𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵𝐴))
54pm5.32i 574 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
61, 5bitri 275 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926  df-ss 3931  df-pss 3934
This theorem is referenced by:  pssirr  4066  pssn2lp  4067  ssnpss  4069  nsspssun  4231  pssdifcom1  4453  pssdifcom2  4454  php3  9173  fincssdom  10276  reclem2pr  11001  ressval3d  17216  islbs3  21065  sltlpss  27819  chpsscon3  31432  chpssati  32292  fundmpss  35754  lpssat  39006  lssat  39009  dihglblem6  41334  pssnssi  45095  mbfpsssmf  46781
  Copyright terms: Public domain W3C validator