| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfpss3 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 4054 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
| 2 | eqss 3965 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | baib 535 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| 4 | 3 | notbid 318 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | pm5.32i 574 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 df-ss 3934 df-pss 3937 |
| This theorem is referenced by: pssirr 4069 pssn2lp 4070 ssnpss 4072 nsspssun 4234 pssdifcom1 4456 pssdifcom2 4457 php3 9179 fincssdom 10283 reclem2pr 11008 ressval3d 17223 islbs3 21072 sltlpss 27826 chpsscon3 31439 chpssati 32299 fundmpss 35761 lpssat 39013 lssat 39016 dihglblem6 41341 pssnssi 45102 mbfpsssmf 46788 |
| Copyright terms: Public domain | W3C validator |