MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss3 Structured version   Visualization version   GIF version

Theorem dfpss3 4112
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfpss3 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem dfpss3
StepHypRef Expression
1 dfpss2 4111 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 eqss 4024 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32baib 535 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵𝐵𝐴))
43notbid 318 . . 3 (𝐴𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵𝐴))
54pm5.32i 574 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
61, 5bitri 275 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wss 3976  wpss 3977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947  df-ss 3993  df-pss 3996
This theorem is referenced by:  pssirr  4126  pssn2lp  4127  ssnpss  4129  nsspssun  4287  pssdifcom1  4513  pssdifcom2  4514  php3  9275  php3OLD  9287  fincssdom  10392  reclem2pr  11117  ressval3d  17305  ressval3dOLD  17306  islbs3  21180  sltlpss  27963  chpsscon3  31535  chpssati  32395  fundmpss  35730  lpssat  38969  lssat  38972  dihglblem6  41297  pssnssi  45003  mbfpsssmf  46704
  Copyright terms: Public domain W3C validator