| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfpss3 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 4051 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
| 2 | eqss 3962 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | baib 535 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| 4 | 3 | notbid 318 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | pm5.32i 574 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ⊊ wpss 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 df-ss 3931 df-pss 3934 |
| This theorem is referenced by: pssirr 4066 pssn2lp 4067 ssnpss 4069 nsspssun 4231 pssdifcom1 4453 pssdifcom2 4454 php3 9173 fincssdom 10276 reclem2pr 11001 ressval3d 17216 islbs3 21065 sltlpss 27819 chpsscon3 31432 chpssati 32292 fundmpss 35754 lpssat 39006 lssat 39009 dihglblem6 41334 pssnssi 45095 mbfpsssmf 46781 |
| Copyright terms: Public domain | W3C validator |