MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss3 Structured version   Visualization version   GIF version

Theorem dfpss3 4025
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfpss3 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem dfpss3
StepHypRef Expression
1 dfpss2 4024 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 eqss 3940 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32baib 535 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵𝐵𝐴))
43notbid 317 . . 3 (𝐴𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵𝐴))
54pm5.32i 574 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
61, 5bitri 274 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1541  wss 3891  wpss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-v 3432  df-in 3898  df-ss 3908  df-pss 3910
This theorem is referenced by:  pssirr  4039  pssn2lp  4040  ssnpss  4042  nsspssun  4196  pssdifcom1  4425  pssdifcom2  4426  php3  8959  php3OLD  8972  fincssdom  10063  reclem2pr  10788  ressval3d  16937  ressval3dOLD  16938  islbs3  20398  chpsscon3  29844  chpssati  30704  fundmpss  33719  sltlpss  34066  lpssat  37006  lssat  37009  dihglblem6  39333  pssnssi  42604  mbfpsssmf  44269
  Copyright terms: Public domain W3C validator