Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpss3 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfpss3 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 3976 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
2 | eqss 3892 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | 2 | baib 539 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
4 | 3 | notbid 321 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵 ⊆ 𝐴)) |
5 | 4 | pm5.32i 578 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
6 | 1, 5 | bitri 278 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 = wceq 1542 ⊆ wss 3843 ⊊ wpss 3844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3400 df-in 3850 df-ss 3860 df-pss 3862 |
This theorem is referenced by: pssirr 3991 pssn2lp 3992 ssnpss 3994 nsspssun 4148 pssdifcom1 4376 pssdifcom2 4377 php3 8753 fincssdom 9823 reclem2pr 10548 ressval3d 16664 islbs3 20046 chpsscon3 29438 chpssati 30298 fundmpss 33312 sltlpss 33725 lpssat 36650 lssat 36653 dihglblem6 38977 pssnssi 42189 mbfpsssmf 43857 |
Copyright terms: Public domain | W3C validator |