![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsssmfmbf | Structured version Visualization version GIF version |
Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsssmfmbf.1 | ⊢ 𝑆 = dom vol |
Ref | Expression |
---|---|
nsssmfmbf | ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vitali2 46351 | . . . . 5 ⊢ dom vol ⊊ 𝒫 ℝ | |
2 | 1 | pssnssi 44739 | . . . 4 ⊢ ¬ 𝒫 ℝ ⊆ dom vol |
3 | nss 4043 | . . . 4 ⊢ (¬ 𝒫 ℝ ⊆ dom vol ↔ ∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol)) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) |
5 | nsssmfmbf.1 | . . . . 5 ⊢ 𝑆 = dom vol | |
6 | elpwi 4604 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
7 | 6 | adantr 479 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → 𝑥 ⊆ ℝ) |
8 | 5 | eleq2i 2818 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ dom vol) |
9 | 8 | bicomi 223 | . . . . . . . 8 ⊢ (𝑥 ∈ dom vol ↔ 𝑥 ∈ 𝑆) |
10 | 9 | notbii 319 | . . . . . . 7 ⊢ (¬ 𝑥 ∈ dom vol ↔ ¬ 𝑥 ∈ 𝑆) |
11 | 10 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝑥 ∈ dom vol → ¬ 𝑥 ∈ 𝑆) |
12 | 11 | adantl 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ¬ 𝑥 ∈ 𝑆) |
13 | eqid 2726 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 ↦ 0) = (𝑦 ∈ 𝑥 ↦ 0) | |
14 | 5, 7, 12, 13 | nsssmfmbflem 46435 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
15 | 14 | exlimiv 1926 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
16 | 4, 15 | ax-mp 5 | . 2 ⊢ ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn) |
17 | nss 4043 | . 2 ⊢ (¬ (SMblFn‘𝑆) ⊆ MblFn ↔ ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) | |
18 | 16, 17 | mpbir 230 | 1 ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ⊆ wss 3946 𝒫 cpw 4597 ↦ cmpt 5228 dom cdm 5674 ‘cfv 6546 ℝcr 11148 0cc0 11149 volcvol 25480 MblFncmbf 25631 SMblFncsmblfn 46352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cc 10469 ax-ac2 10497 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-disj 5111 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8726 df-ec 8728 df-qs 8732 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-dju 9937 df-card 9975 df-acn 9978 df-ac 10152 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-seq 14016 df-exp 14076 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 df-rlim 15486 df-sum 15686 df-rest 17432 df-topgen 17453 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-top 22884 df-topon 22901 df-bases 22937 df-cmp 23379 df-ovol 25481 df-vol 25482 df-mbf 25636 df-salg 45966 df-smblfn 46353 |
This theorem is referenced by: mbfpsssmf 46440 |
Copyright terms: Public domain | W3C validator |