![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsssmfmbf | Structured version Visualization version GIF version |
Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsssmfmbf.1 | ⊢ 𝑆 = dom vol |
Ref | Expression |
---|---|
nsssmfmbf | ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vitali2 45710 | . . . . 5 ⊢ dom vol ⊊ 𝒫 ℝ | |
2 | 1 | pssnssi 44093 | . . . 4 ⊢ ¬ 𝒫 ℝ ⊆ dom vol |
3 | nss 4047 | . . . 4 ⊢ (¬ 𝒫 ℝ ⊆ dom vol ↔ ∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol)) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) |
5 | nsssmfmbf.1 | . . . . 5 ⊢ 𝑆 = dom vol | |
6 | elpwi 4610 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → 𝑥 ⊆ ℝ) |
8 | 5 | eleq2i 2824 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ dom vol) |
9 | 8 | bicomi 223 | . . . . . . . 8 ⊢ (𝑥 ∈ dom vol ↔ 𝑥 ∈ 𝑆) |
10 | 9 | notbii 319 | . . . . . . 7 ⊢ (¬ 𝑥 ∈ dom vol ↔ ¬ 𝑥 ∈ 𝑆) |
11 | 10 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝑥 ∈ dom vol → ¬ 𝑥 ∈ 𝑆) |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ¬ 𝑥 ∈ 𝑆) |
13 | eqid 2731 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 ↦ 0) = (𝑦 ∈ 𝑥 ↦ 0) | |
14 | 5, 7, 12, 13 | nsssmfmbflem 45794 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
15 | 14 | exlimiv 1932 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
16 | 4, 15 | ax-mp 5 | . 2 ⊢ ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn) |
17 | nss 4047 | . 2 ⊢ (¬ (SMblFn‘𝑆) ⊆ MblFn ↔ ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) | |
18 | 16, 17 | mpbir 230 | 1 ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3949 𝒫 cpw 4603 ↦ cmpt 5232 dom cdm 5677 ‘cfv 6544 ℝcr 11112 0cc0 11113 volcvol 25213 MblFncmbf 25364 SMblFncsmblfn 45711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cc 10433 ax-ac2 10461 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-omul 8474 df-er 8706 df-ec 8708 df-qs 8712 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-dju 9899 df-card 9937 df-acn 9940 df-ac 10114 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-rlim 15438 df-sum 15638 df-rest 17373 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-top 22617 df-topon 22634 df-bases 22670 df-cmp 23112 df-ovol 25214 df-vol 25215 df-mbf 25369 df-salg 45325 df-smblfn 45712 |
This theorem is referenced by: mbfpsssmf 45799 |
Copyright terms: Public domain | W3C validator |