Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsssmfmbf | Structured version Visualization version GIF version |
Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsssmfmbf.1 | ⊢ 𝑆 = dom vol |
Ref | Expression |
---|---|
nsssmfmbf | ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vitali2 44619 | . . . . 5 ⊢ dom vol ⊊ 𝒫 ℝ | |
2 | 1 | pssnssi 43021 | . . . 4 ⊢ ¬ 𝒫 ℝ ⊆ dom vol |
3 | nss 3998 | . . . 4 ⊢ (¬ 𝒫 ℝ ⊆ dom vol ↔ ∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol)) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) |
5 | nsssmfmbf.1 | . . . . 5 ⊢ 𝑆 = dom vol | |
6 | elpwi 4559 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
7 | 6 | adantr 482 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → 𝑥 ⊆ ℝ) |
8 | 5 | eleq2i 2829 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ dom vol) |
9 | 8 | bicomi 223 | . . . . . . . 8 ⊢ (𝑥 ∈ dom vol ↔ 𝑥 ∈ 𝑆) |
10 | 9 | notbii 320 | . . . . . . 7 ⊢ (¬ 𝑥 ∈ dom vol ↔ ¬ 𝑥 ∈ 𝑆) |
11 | 10 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝑥 ∈ dom vol → ¬ 𝑥 ∈ 𝑆) |
12 | 11 | adantl 483 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ¬ 𝑥 ∈ 𝑆) |
13 | eqid 2737 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 ↦ 0) = (𝑦 ∈ 𝑥 ↦ 0) | |
14 | 5, 7, 12, 13 | nsssmfmbflem 44703 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
15 | 14 | exlimiv 1933 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
16 | 4, 15 | ax-mp 5 | . 2 ⊢ ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn) |
17 | nss 3998 | . 2 ⊢ (¬ (SMblFn‘𝑆) ⊆ MblFn ↔ ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) | |
18 | 16, 17 | mpbir 230 | 1 ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ⊆ wss 3902 𝒫 cpw 4552 ↦ cmpt 5180 dom cdm 5625 ‘cfv 6484 ℝcr 10976 0cc0 10977 volcvol 24733 MblFncmbf 24884 SMblFncsmblfn 44620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cc 10297 ax-ac2 10325 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-disj 5063 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-oadd 8376 df-omul 8377 df-er 8574 df-ec 8576 df-qs 8580 df-map 8693 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fi 9273 df-sup 9304 df-inf 9305 df-oi 9372 df-dju 9763 df-card 9801 df-acn 9804 df-ac 9978 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-q 12795 df-rp 12837 df-xneg 12954 df-xadd 12955 df-xmul 12956 df-ioo 13189 df-ico 13191 df-icc 13192 df-fz 13346 df-fzo 13489 df-fl 13618 df-seq 13828 df-exp 13889 df-hash 14151 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 df-rlim 15298 df-sum 15498 df-rest 17231 df-topgen 17252 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-top 22149 df-topon 22166 df-bases 22202 df-cmp 22644 df-ovol 24734 df-vol 24735 df-mbf 24889 df-salg 44236 df-smblfn 44621 |
This theorem is referenced by: mbfpsssmf 44708 |
Copyright terms: Public domain | W3C validator |