![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqALT | Structured version Visualization version GIF version |
Description: Alternate proof of pweq 4636 directly from the definition. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pweqALT | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4035 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
2 | 1 | abbidv 2811 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ 𝑥 ⊆ 𝐵}) |
3 | df-pw 4624 | . 2 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
4 | df-pw 4624 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2717 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ss 3993 df-pw 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |