| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4573 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rankxplim 9808 pwdju1 10120 fin23lem17 10267 mnfnre 11193 qtopres 23561 hmphdis 23659 ust0 24083 made0 27761 umgrpredgv 29043 issubgr 29174 uhgrissubgr 29178 cusgredg 29327 cffldtocusgr 29350 cffldtocusgrOLD 29351 konigsbergiedgw 30150 shsspwh 31148 circtopn 33800 lfuhgr 35078 rankeq1o 36132 onsucsuccmpi 36404 bj-unirel 37012 elrfi 42655 islmodfg 43031 clsk1indlem4 44006 clsk1indlem1 44007 clsk1independent 44008 omef 46467 caragensplit 46471 caragenelss 46472 carageneld 46473 omeunile 46476 caragensspw 46480 0ome 46500 isomennd 46502 ovn02 46539 isuspgrimlem 47868 grtri 47912 usgrexmpl1lem 47985 usgrexmpl2lem 47990 lcoop 48373 lincvalsc0 48383 linc0scn0 48385 lincdifsn 48386 linc1 48387 lspsslco 48399 lincresunit3lem2 48442 lincresunit3 48443 |
| Copyright terms: Public domain | W3C validator |