![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4636 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pwfiOLD 9417 rankxplim 9948 pwdju1 10260 fin23lem17 10407 mnfnre 11333 qtopres 23727 hmphdis 23825 ust0 24249 made0 27930 umgrpredgv 29175 issubgr 29306 uhgrissubgr 29310 cusgredg 29459 cffldtocusgr 29482 cffldtocusgrOLD 29483 konigsbergiedgw 30280 shsspwh 31278 circtopn 33783 lfuhgr 35085 rankeq1o 36135 onsucsuccmpi 36409 bj-unirel 37017 elrfi 42650 islmodfg 43026 clsk1indlem4 44006 clsk1indlem1 44007 clsk1independent 44008 omef 46417 caragensplit 46421 caragenelss 46422 carageneld 46423 omeunile 46426 caragensspw 46430 0ome 46450 isomennd 46452 ovn02 46489 uspgrimprop 47757 isuspgrimlem 47758 grtri 47791 usgrexmpl1lem 47836 usgrexmpl2lem 47841 lcoop 48140 lincvalsc0 48150 linc0scn0 48152 lincdifsn 48153 linc1 48154 lspsslco 48166 lincresunit3lem2 48209 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |