| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4561 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: rankxplim 9772 pwdju1 10082 fin23lem17 10229 mnfnre 11155 qtopres 23613 hmphdis 23711 ust0 24135 made0 27818 umgrpredgv 29118 issubgr 29249 uhgrissubgr 29253 cusgredg 29402 cffldtocusgr 29425 cffldtocusgrOLD 29426 konigsbergiedgw 30228 shsspwh 31226 circtopn 33850 r11 35105 r12 35106 lfuhgr 35162 rankeq1o 36215 onsucsuccmpi 36487 bj-unirel 37095 elrfi 42797 islmodfg 43172 clsk1indlem4 44147 clsk1indlem1 44148 clsk1independent 44149 omef 46604 caragensplit 46608 caragenelss 46609 carageneld 46610 omeunile 46613 caragensspw 46617 0ome 46637 isomennd 46639 ovn02 46676 isuspgrimlem 48005 grtri 48050 usgrexmpl1lem 48131 usgrexmpl2lem 48136 lcoop 48522 lincvalsc0 48532 linc0scn0 48534 lincdifsn 48535 linc1 48536 lspsslco 48548 lincresunit3lem2 48591 lincresunit3 48592 |
| Copyright terms: Public domain | W3C validator |