Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4546 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pwfiOLD 9044 rankxplim 9568 pwdju1 9877 fin23lem17 10025 mnfnre 10949 qtopres 22757 hmphdis 22855 ust0 23279 umgrpredgv 27413 issubgr 27541 uhgrissubgr 27545 cusgredg 27694 cffldtocusgr 27717 konigsbergiedgw 28513 shsspwh 29509 circtopn 31689 lfuhgr 32979 made0 33984 rankeq1o 34400 onsucsuccmpi 34559 bj-unirel 35151 elrfi 40432 islmodfg 40810 clsk1indlem4 41543 clsk1indlem1 41544 clsk1independent 41545 omef 43924 caragensplit 43928 caragenelss 43929 carageneld 43930 omeunile 43933 caragensspw 43937 0ome 43957 isomennd 43959 ovn02 43996 lcoop 45640 lincvalsc0 45650 linc0scn0 45652 lincdifsn 45653 linc1 45654 lspsslco 45666 lincresunit3lem2 45709 lincresunit3 45710 |
Copyright terms: Public domain | W3C validator |