| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4594 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: rankxplim 9898 pwdju1 10210 fin23lem17 10357 mnfnre 11283 qtopres 23641 hmphdis 23739 ust0 24163 made0 27842 umgrpredgv 29124 issubgr 29255 uhgrissubgr 29259 cusgredg 29408 cffldtocusgr 29431 cffldtocusgrOLD 29432 konigsbergiedgw 30234 shsspwh 31232 circtopn 33873 lfuhgr 35145 rankeq1o 36194 onsucsuccmpi 36466 bj-unirel 37074 elrfi 42684 islmodfg 43060 clsk1indlem4 44035 clsk1indlem1 44036 clsk1independent 44037 omef 46492 caragensplit 46496 caragenelss 46497 carageneld 46498 omeunile 46501 caragensspw 46505 0ome 46525 isomennd 46527 ovn02 46564 isuspgrimlem 47875 grtri 47919 usgrexmpl1lem 47992 usgrexmpl2lem 47997 lcoop 48354 lincvalsc0 48364 linc0scn0 48366 lincdifsn 48367 linc1 48368 lspsslco 48380 lincresunit3lem2 48423 lincresunit3 48424 |
| Copyright terms: Public domain | W3C validator |