| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4577 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: rankxplim 9832 pwdju1 10144 fin23lem17 10291 mnfnre 11217 qtopres 23585 hmphdis 23683 ust0 24107 made0 27785 umgrpredgv 29067 issubgr 29198 uhgrissubgr 29202 cusgredg 29351 cffldtocusgr 29374 cffldtocusgrOLD 29375 konigsbergiedgw 30177 shsspwh 31175 circtopn 33827 lfuhgr 35105 rankeq1o 36159 onsucsuccmpi 36431 bj-unirel 37039 elrfi 42682 islmodfg 43058 clsk1indlem4 44033 clsk1indlem1 44034 clsk1independent 44035 omef 46494 caragensplit 46498 caragenelss 46499 carageneld 46500 omeunile 46503 caragensspw 46507 0ome 46527 isomennd 46529 ovn02 46566 isuspgrimlem 47895 grtri 47939 usgrexmpl1lem 48012 usgrexmpl2lem 48017 lcoop 48400 lincvalsc0 48410 linc0scn0 48412 lincdifsn 48413 linc1 48414 lspsslco 48426 lincresunit3lem2 48469 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |