| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4580 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: rankxplim 9839 pwdju1 10151 fin23lem17 10298 mnfnre 11224 qtopres 23592 hmphdis 23690 ust0 24114 made0 27792 umgrpredgv 29074 issubgr 29205 uhgrissubgr 29209 cusgredg 29358 cffldtocusgr 29381 cffldtocusgrOLD 29382 konigsbergiedgw 30184 shsspwh 31182 circtopn 33834 lfuhgr 35112 rankeq1o 36166 onsucsuccmpi 36438 bj-unirel 37046 elrfi 42689 islmodfg 43065 clsk1indlem4 44040 clsk1indlem1 44041 clsk1independent 44042 omef 46501 caragensplit 46505 caragenelss 46506 carageneld 46507 omeunile 46510 caragensspw 46514 0ome 46534 isomennd 46536 ovn02 46573 isuspgrimlem 47899 grtri 47943 usgrexmpl1lem 48016 usgrexmpl2lem 48021 lcoop 48404 lincvalsc0 48414 linc0scn0 48416 lincdifsn 48417 linc1 48418 lspsslco 48430 lincresunit3lem2 48473 lincresunit3 48474 |
| Copyright terms: Public domain | W3C validator |