| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4573 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rankxplim 9808 pwdju1 10120 fin23lem17 10267 mnfnre 11193 qtopres 23618 hmphdis 23716 ust0 24140 made0 27822 umgrpredgv 29120 issubgr 29251 uhgrissubgr 29255 cusgredg 29404 cffldtocusgr 29427 cffldtocusgrOLD 29428 konigsbergiedgw 30227 shsspwh 31225 circtopn 33820 lfuhgr 35098 rankeq1o 36152 onsucsuccmpi 36424 bj-unirel 37032 elrfi 42675 islmodfg 43051 clsk1indlem4 44026 clsk1indlem1 44027 clsk1independent 44028 omef 46487 caragensplit 46491 caragenelss 46492 carageneld 46493 omeunile 46496 caragensspw 46500 0ome 46520 isomennd 46522 ovn02 46559 isuspgrimlem 47888 grtri 47932 usgrexmpl1lem 48005 usgrexmpl2lem 48010 lcoop 48393 lincvalsc0 48403 linc0scn0 48405 lincdifsn 48406 linc1 48407 lspsslco 48419 lincresunit3lem2 48462 lincresunit3 48463 |
| Copyright terms: Public domain | W3C validator |