![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4619 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-pw 4607 |
This theorem is referenced by: rankxplim 9917 pwdju1 10229 fin23lem17 10376 mnfnre 11302 qtopres 23722 hmphdis 23820 ust0 24244 made0 27927 umgrpredgv 29172 issubgr 29303 uhgrissubgr 29307 cusgredg 29456 cffldtocusgr 29479 cffldtocusgrOLD 29480 konigsbergiedgw 30277 shsspwh 31275 circtopn 33798 lfuhgr 35102 rankeq1o 36153 onsucsuccmpi 36426 bj-unirel 37034 elrfi 42682 islmodfg 43058 clsk1indlem4 44034 clsk1indlem1 44035 clsk1independent 44036 omef 46452 caragensplit 46456 caragenelss 46457 carageneld 46458 omeunile 46461 caragensspw 46465 0ome 46485 isomennd 46487 ovn02 46524 uspgrimprop 47811 isuspgrimlem 47812 grtri 47845 usgrexmpl1lem 47916 usgrexmpl2lem 47921 lcoop 48257 lincvalsc0 48267 linc0scn0 48269 lincdifsn 48270 linc1 48271 lspsslco 48283 lincresunit3lem2 48326 lincresunit3 48327 |
Copyright terms: Public domain | W3C validator |