Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4561 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 𝒫 cpw 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-pw 4549 |
This theorem is referenced by: pwfiOLD 9212 rankxplim 9736 pwdju1 10047 fin23lem17 10195 mnfnre 11119 qtopres 22955 hmphdis 23053 ust0 23477 umgrpredgv 27799 issubgr 27927 uhgrissubgr 27931 cusgredg 28080 cffldtocusgr 28103 konigsbergiedgw 28900 shsspwh 29896 circtopn 32085 lfuhgr 33378 made0 34153 rankeq1o 34569 onsucsuccmpi 34728 bj-unirel 35335 elrfi 40786 islmodfg 41165 clsk1indlem4 41984 clsk1indlem1 41985 clsk1independent 41986 omef 44380 caragensplit 44384 caragenelss 44385 carageneld 44386 omeunile 44389 caragensspw 44393 0ome 44413 isomennd 44415 ovn02 44452 lcoop 46112 lincvalsc0 46122 linc0scn0 46124 lincdifsn 46125 linc1 46126 lspsslco 46138 lincresunit3lem2 46181 lincresunit3 46182 |
Copyright terms: Public domain | W3C validator |