Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4549 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: pwfiOLD 9114 rankxplim 9637 pwdju1 9946 fin23lem17 10094 mnfnre 11018 qtopres 22849 hmphdis 22947 ust0 23371 umgrpredgv 27510 issubgr 27638 uhgrissubgr 27642 cusgredg 27791 cffldtocusgr 27814 konigsbergiedgw 28612 shsspwh 29608 circtopn 31787 lfuhgr 33079 made0 34057 rankeq1o 34473 onsucsuccmpi 34632 bj-unirel 35224 elrfi 40516 islmodfg 40894 clsk1indlem4 41654 clsk1indlem1 41655 clsk1independent 41656 omef 44034 caragensplit 44038 caragenelss 44039 carageneld 44040 omeunile 44043 caragensspw 44047 0ome 44067 isomennd 44069 ovn02 44106 lcoop 45752 lincvalsc0 45762 linc0scn0 45764 lincdifsn 45765 linc1 45766 lspsslco 45778 lincresunit3lem2 45821 lincresunit3 45822 |
Copyright terms: Public domain | W3C validator |