| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 4565 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: rankxplim 9775 pwdju1 10085 fin23lem17 10232 mnfnre 11158 qtopres 23583 hmphdis 23681 ust0 24105 made0 27787 umgrpredgv 29085 issubgr 29216 uhgrissubgr 29220 cusgredg 29369 cffldtocusgr 29392 cffldtocusgrOLD 29393 konigsbergiedgw 30192 shsspwh 31190 circtopn 33804 lfuhgr 35091 rankeq1o 36145 onsucsuccmpi 36417 bj-unirel 37025 elrfi 42667 islmodfg 43042 clsk1indlem4 44017 clsk1indlem1 44018 clsk1independent 44019 omef 46477 caragensplit 46481 caragenelss 46482 carageneld 46483 omeunile 46486 caragensspw 46490 0ome 46510 isomennd 46512 ovn02 46549 isuspgrimlem 47879 grtri 47924 usgrexmpl1lem 48005 usgrexmpl2lem 48010 lcoop 48396 lincvalsc0 48406 linc0scn0 48408 lincdifsn 48409 linc1 48410 lspsslco 48422 lincresunit3lem2 48465 lincresunit3 48466 |
| Copyright terms: Public domain | W3C validator |