| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4017 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sspwd 4588 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 3 | eqimss2 4018 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | sspwd 4588 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 5 | 2, 4 | eqssd 3976 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: pweqi 4591 pweqd 4592 axpweq 5321 pwexg 5348 pwssun 5545 knatar 7350 pwdom 9143 canth2g 9145 pwfi 9329 fival 9424 marypha1lem 9445 marypha1 9446 wdompwdom 9592 canthwdom 9593 r1sucg 9783 ranklim 9858 r1pwALT 9860 isacn 10058 dfac12r 10161 dfac12k 10162 pwsdompw 10217 ackbij1lem8 10240 ackbij1lem14 10246 r1om 10257 fictb 10258 isfin1a 10306 isfin2 10308 isfin3 10310 isfin3ds 10343 isf33lem 10380 domtriomlem 10456 ttukeylem1 10523 elgch 10636 wunpw 10721 wunex2 10752 wuncval2 10761 eltskg 10764 eltsk2g 10765 tskpwss 10766 tskpw 10767 inar1 10789 grupw 10809 grothpw 10840 grothpwex 10841 axgroth6 10842 grothomex 10843 grothac 10844 axdc4uz 14002 hashpw 14454 hashbc 14471 ackbijnn 15844 incexclem 15852 rami 17035 ismre 17602 isacs 17663 isacs2 17665 acsfiel 17666 isacs1i 17669 mreacs 17670 isssc 17833 acsficl 18557 efmnd 18848 pmtrfval 19431 selvffval 22071 istopg 22833 istopon 22850 eltg 22895 tgdom 22916 ntrval 22974 nrmsep3 23293 iscmp 23326 cmpcov 23327 cmpsublem 23337 cmpsub 23338 tgcmp 23339 uncmp 23341 hauscmplem 23344 is1stc 23379 2ndc1stc 23389 llyi 23412 nllyi 23413 cldllycmp 23433 isfbas 23767 isfil 23785 filss 23791 fgval 23808 elfg 23809 isufil 23841 alexsublem 23982 alexsubb 23984 alexsubALTlem1 23985 alexsubALTlem2 23986 alexsubALTlem4 23988 alexsubALT 23989 restmetu 24509 bndth 24908 ovolicc2 25475 uhgreq12g 29044 uhgr0vb 29051 isupgr 29063 isumgr 29074 isuspgr 29131 isusgr 29132 isausgr 29143 lfuhgr1v0e 29233 nbuhgr2vtx1edgblem 29330 ex-pw 30410 indv 32829 iscref 33875 sigaval 34142 issiga 34143 isrnsiga 34144 issgon 34154 isldsys 34187 issros 34206 measval 34229 isrnmeas 34231 rankpwg 36187 neibastop1 36377 neibastop2lem 36378 neibastop2 36379 neibastop3 36380 neifg 36389 limsucncmpi 36463 bj-snglex 36991 bj-ismoore 37123 pibp19 37432 pibt2 37435 cover2g 37740 isnacs 42727 mrefg2 42730 aomclem8 43085 islssfg2 43095 lnr2i 43140 pwelg 43584 fsovd 44032 fsovcnvlem 44037 dssmapfvd 44041 clsk1independent 44070 ntrneibex 44097 mnuop123d 44286 stoweidlem50 46079 stoweidlem57 46086 issal 46343 omessle 46527 grtri 47952 vsetrec 49567 elpglem3 49577 pgindnf 49580 |
| Copyright terms: Public domain | W3C validator |