Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version |
Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3973 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sspwd 4545 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
3 | eqimss2 3974 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
4 | 3 | sspwd 4545 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
5 | 2, 4 | eqssd 3934 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pweqi 4548 pweqd 4549 axpweq 5282 pwexg 5296 pwssun 5476 knatar 7208 pwdom 8865 canth2g 8867 pwfi 8923 pwfiOLD 9044 fival 9101 marypha1lem 9122 marypha1 9123 wdompwdom 9267 canthwdom 9268 r1sucg 9458 ranklim 9533 r1pwALT 9535 isacn 9731 dfac12r 9833 dfac12k 9834 pwsdompw 9891 ackbij1lem8 9914 ackbij1lem14 9920 r1om 9931 fictb 9932 isfin1a 9979 isfin2 9981 isfin3 9983 isfin3ds 10016 isf33lem 10053 domtriomlem 10129 ttukeylem1 10196 elgch 10309 wunpw 10394 wunex2 10425 wuncval2 10434 eltskg 10437 eltsk2g 10438 tskpwss 10439 tskpw 10440 inar1 10462 grupw 10482 grothpw 10513 grothpwex 10514 axgroth6 10515 grothomex 10516 grothac 10517 axdc4uz 13632 hashpw 14079 hashbc 14093 ackbijnn 15468 incexclem 15476 rami 16644 ismre 17216 isacs 17277 isacs2 17279 acsfiel 17280 isacs1i 17283 mreacs 17284 isssc 17449 acsficl 18180 efmnd 18424 pmtrfval 18973 selvffval 21236 istopg 21952 istopon 21969 eltg 22015 tgdom 22036 ntrval 22095 nrmsep3 22414 iscmp 22447 cmpcov 22448 cmpsublem 22458 cmpsub 22459 tgcmp 22460 uncmp 22462 hauscmplem 22465 is1stc 22500 2ndc1stc 22510 llyi 22533 nllyi 22534 cldllycmp 22554 isfbas 22888 isfil 22906 filss 22912 fgval 22929 elfg 22930 isufil 22962 alexsublem 23103 alexsubb 23105 alexsubALTlem1 23106 alexsubALTlem2 23107 alexsubALTlem4 23109 alexsubALT 23110 restmetu 23632 bndth 24027 ovolicc2 24591 uhgreq12g 27338 uhgr0vb 27345 isupgr 27357 isumgr 27368 isuspgr 27425 isusgr 27426 isausgr 27437 lfuhgr1v0e 27524 usgrexmpl 27533 nbuhgr2vtx1edgblem 27621 ex-pw 28694 iscref 31696 indv 31880 sigaval 31979 issiga 31980 isrnsiga 31981 issgon 31991 isldsys 32024 issros 32043 measval 32066 isrnmeas 32068 rankpwg 34398 neibastop1 34475 neibastop2lem 34476 neibastop2 34477 neibastop3 34478 neifg 34487 limsucncmpi 34561 bj-snglex 35090 bj-ismoore 35203 pibp19 35512 pibt2 35515 cover2g 35800 isnacs 40442 mrefg2 40445 aomclem8 40802 islssfg2 40812 lnr2i 40857 pwelg 41056 fsovd 41505 fsovcnvlem 41510 dssmapfvd 41514 clsk1independent 41545 ntrneibex 41572 mnuop123d 41769 stoweidlem50 43481 stoweidlem57 43488 issal 43745 omessle 43926 vsetrec 46294 elpglem3 46304 |
Copyright terms: Public domain | W3C validator |