| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4005 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sspwd 4576 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 3 | eqimss2 4006 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | sspwd 4576 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 5 | 2, 4 | eqssd 3964 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: pweqi 4579 pweqd 4580 axpweq 5306 pwexg 5333 pwssun 5530 knatar 7332 pwdom 9093 canth2g 9095 pwfi 9268 fival 9363 marypha1lem 9384 marypha1 9385 wdompwdom 9531 canthwdom 9532 r1sucg 9722 ranklim 9797 r1pwALT 9799 isacn 9997 dfac12r 10100 dfac12k 10101 pwsdompw 10156 ackbij1lem8 10179 ackbij1lem14 10185 r1om 10196 fictb 10197 isfin1a 10245 isfin2 10247 isfin3 10249 isfin3ds 10282 isf33lem 10319 domtriomlem 10395 ttukeylem1 10462 elgch 10575 wunpw 10660 wunex2 10691 wuncval2 10700 eltskg 10703 eltsk2g 10704 tskpwss 10705 tskpw 10706 inar1 10728 grupw 10748 grothpw 10779 grothpwex 10780 axgroth6 10781 grothomex 10782 grothac 10783 axdc4uz 13949 hashpw 14401 hashbc 14418 ackbijnn 15794 incexclem 15802 rami 16986 ismre 17551 isacs 17612 isacs2 17614 acsfiel 17615 isacs1i 17618 mreacs 17619 isssc 17782 acsficl 18506 efmnd 18797 pmtrfval 19380 selvffval 22020 istopg 22782 istopon 22799 eltg 22844 tgdom 22865 ntrval 22923 nrmsep3 23242 iscmp 23275 cmpcov 23276 cmpsublem 23286 cmpsub 23287 tgcmp 23288 uncmp 23290 hauscmplem 23293 is1stc 23328 2ndc1stc 23338 llyi 23361 nllyi 23362 cldllycmp 23382 isfbas 23716 isfil 23734 filss 23740 fgval 23757 elfg 23758 isufil 23790 alexsublem 23931 alexsubb 23933 alexsubALTlem1 23934 alexsubALTlem2 23935 alexsubALTlem4 23937 alexsubALT 23938 restmetu 24458 bndth 24857 ovolicc2 25423 uhgreq12g 28992 uhgr0vb 28999 isupgr 29011 isumgr 29022 isuspgr 29079 isusgr 29080 isausgr 29091 lfuhgr1v0e 29181 nbuhgr2vtx1edgblem 29278 ex-pw 30358 indv 32775 iscref 33834 sigaval 34101 issiga 34102 isrnsiga 34103 issgon 34113 isldsys 34146 issros 34165 measval 34188 isrnmeas 34190 rankpwg 36157 neibastop1 36347 neibastop2lem 36348 neibastop2 36349 neibastop3 36350 neifg 36359 limsucncmpi 36433 bj-snglex 36961 bj-ismoore 37093 pibp19 37402 pibt2 37405 cover2g 37710 isnacs 42692 mrefg2 42695 aomclem8 43050 islssfg2 43060 lnr2i 43105 pwelg 43549 fsovd 43997 fsovcnvlem 44002 dssmapfvd 44006 clsk1independent 44035 ntrneibex 44062 mnuop123d 44251 stoweidlem50 46048 stoweidlem57 46055 issal 46312 omessle 46496 grtri 47939 vsetrec 49692 elpglem3 49702 pgindnf 49705 |
| Copyright terms: Public domain | W3C validator |