![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version |
Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4067 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sspwd 4635 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
3 | eqimss2 4068 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
4 | 3 | sspwd 4635 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
5 | 2, 4 | eqssd 4026 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pweqi 4638 pweqd 4639 axpweq 5369 pwexg 5396 pwssun 5590 knatar 7393 pwdom 9195 canth2g 9197 pwfi 9385 pwfiOLD 9417 fival 9481 marypha1lem 9502 marypha1 9503 wdompwdom 9647 canthwdom 9648 r1sucg 9838 ranklim 9913 r1pwALT 9915 isacn 10113 dfac12r 10216 dfac12k 10217 pwsdompw 10272 ackbij1lem8 10295 ackbij1lem14 10301 r1om 10312 fictb 10313 isfin1a 10361 isfin2 10363 isfin3 10365 isfin3ds 10398 isf33lem 10435 domtriomlem 10511 ttukeylem1 10578 elgch 10691 wunpw 10776 wunex2 10807 wuncval2 10816 eltskg 10819 eltsk2g 10820 tskpwss 10821 tskpw 10822 inar1 10844 grupw 10864 grothpw 10895 grothpwex 10896 axgroth6 10897 grothomex 10898 grothac 10899 axdc4uz 14035 hashpw 14485 hashbc 14502 ackbijnn 15876 incexclem 15884 rami 17062 ismre 17648 isacs 17709 isacs2 17711 acsfiel 17712 isacs1i 17715 mreacs 17716 isssc 17881 acsficl 18617 efmnd 18905 pmtrfval 19492 selvffval 22160 istopg 22922 istopon 22939 eltg 22985 tgdom 23006 ntrval 23065 nrmsep3 23384 iscmp 23417 cmpcov 23418 cmpsublem 23428 cmpsub 23429 tgcmp 23430 uncmp 23432 hauscmplem 23435 is1stc 23470 2ndc1stc 23480 llyi 23503 nllyi 23504 cldllycmp 23524 isfbas 23858 isfil 23876 filss 23882 fgval 23899 elfg 23900 isufil 23932 alexsublem 24073 alexsubb 24075 alexsubALTlem1 24076 alexsubALTlem2 24077 alexsubALTlem4 24079 alexsubALT 24080 restmetu 24604 bndth 25009 ovolicc2 25576 uhgreq12g 29100 uhgr0vb 29107 isupgr 29119 isumgr 29130 isuspgr 29187 isusgr 29188 isausgr 29199 lfuhgr1v0e 29289 nbuhgr2vtx1edgblem 29386 ex-pw 30461 iscref 33790 indv 33976 sigaval 34075 issiga 34076 isrnsiga 34077 issgon 34087 isldsys 34120 issros 34139 measval 34162 isrnmeas 34164 rankpwg 36133 neibastop1 36325 neibastop2lem 36326 neibastop2 36327 neibastop3 36328 neifg 36337 limsucncmpi 36411 bj-snglex 36939 bj-ismoore 37071 pibp19 37380 pibt2 37383 cover2g 37676 isnacs 42660 mrefg2 42663 aomclem8 43018 islssfg2 43028 lnr2i 43073 pwelg 43522 fsovd 43970 fsovcnvlem 43975 dssmapfvd 43979 clsk1independent 44008 ntrneibex 44035 mnuop123d 44231 stoweidlem50 45971 stoweidlem57 45978 issal 46235 omessle 46419 grtri 47791 vsetrec 48795 elpglem3 48805 pgindnf 48808 |
Copyright terms: Public domain | W3C validator |