Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version |
Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3978 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sspwd 4549 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
3 | eqimss2 3979 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
4 | 3 | sspwd 4549 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
5 | 2, 4 | eqssd 3939 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 𝒫 cpw 4534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-pw 4536 |
This theorem is referenced by: pweqi 4552 pweqd 4553 axpweq 5288 pwexg 5302 pwssun 5486 knatar 7237 pwdom 8925 canth2g 8927 pwfi 8970 pwfiOLD 9123 fival 9180 marypha1lem 9201 marypha1 9202 wdompwdom 9346 canthwdom 9347 r1sucg 9536 ranklim 9611 r1pwALT 9613 isacn 9809 dfac12r 9911 dfac12k 9912 pwsdompw 9969 ackbij1lem8 9992 ackbij1lem14 9998 r1om 10009 fictb 10010 isfin1a 10057 isfin2 10059 isfin3 10061 isfin3ds 10094 isf33lem 10131 domtriomlem 10207 ttukeylem1 10274 elgch 10387 wunpw 10472 wunex2 10503 wuncval2 10512 eltskg 10515 eltsk2g 10516 tskpwss 10517 tskpw 10518 inar1 10540 grupw 10560 grothpw 10591 grothpwex 10592 axgroth6 10593 grothomex 10594 grothac 10595 axdc4uz 13713 hashpw 14160 hashbc 14174 ackbijnn 15549 incexclem 15557 rami 16725 ismre 17308 isacs 17369 isacs2 17371 acsfiel 17372 isacs1i 17375 mreacs 17376 isssc 17541 acsficl 18274 efmnd 18518 pmtrfval 19067 selvffval 21335 istopg 22053 istopon 22070 eltg 22116 tgdom 22137 ntrval 22196 nrmsep3 22515 iscmp 22548 cmpcov 22549 cmpsublem 22559 cmpsub 22560 tgcmp 22561 uncmp 22563 hauscmplem 22566 is1stc 22601 2ndc1stc 22611 llyi 22634 nllyi 22635 cldllycmp 22655 isfbas 22989 isfil 23007 filss 23013 fgval 23030 elfg 23031 isufil 23063 alexsublem 23204 alexsubb 23206 alexsubALTlem1 23207 alexsubALTlem2 23208 alexsubALTlem4 23210 alexsubALT 23211 restmetu 23735 bndth 24130 ovolicc2 24695 uhgreq12g 27444 uhgr0vb 27451 isupgr 27463 isumgr 27474 isuspgr 27531 isusgr 27532 isausgr 27543 lfuhgr1v0e 27630 usgrexmpl 27639 nbuhgr2vtx1edgblem 27727 ex-pw 28802 iscref 31803 indv 31989 sigaval 32088 issiga 32089 isrnsiga 32090 issgon 32100 isldsys 32133 issros 32152 measval 32175 isrnmeas 32177 rankpwg 34480 neibastop1 34557 neibastop2lem 34558 neibastop2 34559 neibastop3 34560 neifg 34569 limsucncmpi 34643 bj-snglex 35172 bj-ismoore 35285 pibp19 35594 pibt2 35597 cover2g 35882 isnacs 40533 mrefg2 40536 aomclem8 40893 islssfg2 40903 lnr2i 40948 pwelg 41174 fsovd 41623 fsovcnvlem 41628 dssmapfvd 41632 clsk1independent 41663 ntrneibex 41690 mnuop123d 41887 stoweidlem50 43598 stoweidlem57 43605 issal 43862 omessle 44043 vsetrec 46419 elpglem3 46429 |
Copyright terms: Public domain | W3C validator |