![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version |
Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4054 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sspwd 4618 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
3 | eqimss2 4055 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
4 | 3 | sspwd 4618 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
5 | 2, 4 | eqssd 4013 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-pw 4607 |
This theorem is referenced by: pweqi 4621 pweqd 4622 axpweq 5357 pwexg 5384 pwssun 5580 knatar 7377 pwdom 9168 canth2g 9170 pwfi 9355 fival 9450 marypha1lem 9471 marypha1 9472 wdompwdom 9616 canthwdom 9617 r1sucg 9807 ranklim 9882 r1pwALT 9884 isacn 10082 dfac12r 10185 dfac12k 10186 pwsdompw 10241 ackbij1lem8 10264 ackbij1lem14 10270 r1om 10281 fictb 10282 isfin1a 10330 isfin2 10332 isfin3 10334 isfin3ds 10367 isf33lem 10404 domtriomlem 10480 ttukeylem1 10547 elgch 10660 wunpw 10745 wunex2 10776 wuncval2 10785 eltskg 10788 eltsk2g 10789 tskpwss 10790 tskpw 10791 inar1 10813 grupw 10833 grothpw 10864 grothpwex 10865 axgroth6 10866 grothomex 10867 grothac 10868 axdc4uz 14022 hashpw 14472 hashbc 14489 ackbijnn 15861 incexclem 15869 rami 17049 ismre 17635 isacs 17696 isacs2 17698 acsfiel 17699 isacs1i 17702 mreacs 17703 isssc 17868 acsficl 18605 efmnd 18896 pmtrfval 19483 selvffval 22155 istopg 22917 istopon 22934 eltg 22980 tgdom 23001 ntrval 23060 nrmsep3 23379 iscmp 23412 cmpcov 23413 cmpsublem 23423 cmpsub 23424 tgcmp 23425 uncmp 23427 hauscmplem 23430 is1stc 23465 2ndc1stc 23475 llyi 23498 nllyi 23499 cldllycmp 23519 isfbas 23853 isfil 23871 filss 23877 fgval 23894 elfg 23895 isufil 23927 alexsublem 24068 alexsubb 24070 alexsubALTlem1 24071 alexsubALTlem2 24072 alexsubALTlem4 24074 alexsubALT 24075 restmetu 24599 bndth 25004 ovolicc2 25571 uhgreq12g 29097 uhgr0vb 29104 isupgr 29116 isumgr 29127 isuspgr 29184 isusgr 29185 isausgr 29196 lfuhgr1v0e 29286 nbuhgr2vtx1edgblem 29383 ex-pw 30458 iscref 33805 indv 33993 sigaval 34092 issiga 34093 isrnsiga 34094 issgon 34104 isldsys 34137 issros 34156 measval 34179 isrnmeas 34181 rankpwg 36151 neibastop1 36342 neibastop2lem 36343 neibastop2 36344 neibastop3 36345 neifg 36354 limsucncmpi 36428 bj-snglex 36956 bj-ismoore 37088 pibp19 37397 pibt2 37400 cover2g 37703 isnacs 42692 mrefg2 42695 aomclem8 43050 islssfg2 43060 lnr2i 43105 pwelg 43550 fsovd 43998 fsovcnvlem 44003 dssmapfvd 44007 clsk1independent 44036 ntrneibex 44063 mnuop123d 44258 stoweidlem50 46006 stoweidlem57 46013 issal 46270 omessle 46454 grtri 47845 vsetrec 48934 elpglem3 48944 pgindnf 48947 |
Copyright terms: Public domain | W3C validator |