![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version |
Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4040 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sspwd 4615 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
3 | eqimss2 4041 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
4 | 3 | sspwd 4615 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
5 | 2, 4 | eqssd 3999 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 𝒫 cpw 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-pw 4604 |
This theorem is referenced by: pweqi 4618 pweqd 4619 axpweq 5348 pwexg 5376 pwssun 5571 knatar 7353 pwdom 9128 canth2g 9130 pwfi 9177 pwfiOLD 9346 fival 9406 marypha1lem 9427 marypha1 9428 wdompwdom 9572 canthwdom 9573 r1sucg 9763 ranklim 9838 r1pwALT 9840 isacn 10038 dfac12r 10140 dfac12k 10141 pwsdompw 10198 ackbij1lem8 10221 ackbij1lem14 10227 r1om 10238 fictb 10239 isfin1a 10286 isfin2 10288 isfin3 10290 isfin3ds 10323 isf33lem 10360 domtriomlem 10436 ttukeylem1 10503 elgch 10616 wunpw 10701 wunex2 10732 wuncval2 10741 eltskg 10744 eltsk2g 10745 tskpwss 10746 tskpw 10747 inar1 10769 grupw 10789 grothpw 10820 grothpwex 10821 axgroth6 10822 grothomex 10823 grothac 10824 axdc4uz 13948 hashpw 14395 hashbc 14411 ackbijnn 15773 incexclem 15781 rami 16947 ismre 17533 isacs 17594 isacs2 17596 acsfiel 17597 isacs1i 17600 mreacs 17601 isssc 17766 acsficl 18499 efmnd 18750 pmtrfval 19317 selvffval 21678 istopg 22396 istopon 22413 eltg 22459 tgdom 22480 ntrval 22539 nrmsep3 22858 iscmp 22891 cmpcov 22892 cmpsublem 22902 cmpsub 22903 tgcmp 22904 uncmp 22906 hauscmplem 22909 is1stc 22944 2ndc1stc 22954 llyi 22977 nllyi 22978 cldllycmp 22998 isfbas 23332 isfil 23350 filss 23356 fgval 23373 elfg 23374 isufil 23406 alexsublem 23547 alexsubb 23549 alexsubALTlem1 23550 alexsubALTlem2 23551 alexsubALTlem4 23553 alexsubALT 23554 restmetu 24078 bndth 24473 ovolicc2 25038 uhgreq12g 28322 uhgr0vb 28329 isupgr 28341 isumgr 28352 isuspgr 28409 isusgr 28410 isausgr 28421 lfuhgr1v0e 28508 usgrexmpl 28517 nbuhgr2vtx1edgblem 28605 ex-pw 29679 iscref 32819 indv 33005 sigaval 33104 issiga 33105 isrnsiga 33106 issgon 33116 isldsys 33149 issros 33168 measval 33191 isrnmeas 33193 rankpwg 35136 neibastop1 35239 neibastop2lem 35240 neibastop2 35241 neibastop3 35242 neifg 35251 limsucncmpi 35325 bj-snglex 35849 bj-ismoore 35981 pibp19 36290 pibt2 36293 cover2g 36579 isnacs 41432 mrefg2 41435 aomclem8 41793 islssfg2 41803 lnr2i 41848 pwelg 42301 fsovd 42749 fsovcnvlem 42754 dssmapfvd 42758 clsk1independent 42787 ntrneibex 42814 mnuop123d 43011 stoweidlem50 44756 stoweidlem57 44763 issal 45020 omessle 45204 vsetrec 47738 elpglem3 47748 pgindnf 47751 |
Copyright terms: Public domain | W3C validator |