| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3996 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sspwd 4566 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 3 | eqimss2 3997 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | sspwd 4566 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 5 | 2, 4 | eqssd 3955 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: pweqi 4569 pweqd 4570 axpweq 5293 pwexg 5320 pwssun 5515 knatar 7298 pwdom 9053 canth2g 9055 pwfi 9226 fival 9321 marypha1lem 9342 marypha1 9343 wdompwdom 9489 canthwdom 9490 r1sucg 9684 ranklim 9759 r1pwALT 9761 isacn 9957 dfac12r 10060 dfac12k 10061 pwsdompw 10116 ackbij1lem8 10139 ackbij1lem14 10145 r1om 10156 fictb 10157 isfin1a 10205 isfin2 10207 isfin3 10209 isfin3ds 10242 isf33lem 10279 domtriomlem 10355 ttukeylem1 10422 elgch 10535 wunpw 10620 wunex2 10651 wuncval2 10660 eltskg 10663 eltsk2g 10664 tskpwss 10665 tskpw 10666 inar1 10688 grupw 10708 grothpw 10739 grothpwex 10740 axgroth6 10741 grothomex 10742 grothac 10743 axdc4uz 13910 hashpw 14362 hashbc 14379 ackbijnn 15754 incexclem 15762 rami 16946 ismre 17511 isacs 17576 isacs2 17578 acsfiel 17579 isacs1i 17582 mreacs 17583 isssc 17746 acsficl 18472 efmnd 18763 pmtrfval 19348 selvffval 22037 istopg 22799 istopon 22816 eltg 22861 tgdom 22882 ntrval 22940 nrmsep3 23259 iscmp 23292 cmpcov 23293 cmpsublem 23303 cmpsub 23304 tgcmp 23305 uncmp 23307 hauscmplem 23310 is1stc 23345 2ndc1stc 23355 llyi 23378 nllyi 23379 cldllycmp 23399 isfbas 23733 isfil 23751 filss 23757 fgval 23774 elfg 23775 isufil 23807 alexsublem 23948 alexsubb 23950 alexsubALTlem1 23951 alexsubALTlem2 23952 alexsubALTlem4 23954 alexsubALT 23955 restmetu 24475 bndth 24874 ovolicc2 25440 uhgreq12g 29029 uhgr0vb 29036 isupgr 29048 isumgr 29059 isuspgr 29116 isusgr 29117 isausgr 29128 lfuhgr1v0e 29218 nbuhgr2vtx1edgblem 29315 ex-pw 30392 indv 32814 iscref 33830 sigaval 34097 issiga 34098 isrnsiga 34099 issgon 34109 isldsys 34142 issros 34161 measval 34184 isrnmeas 34186 rankpwg 36162 neibastop1 36352 neibastop2lem 36353 neibastop2 36354 neibastop3 36355 neifg 36364 limsucncmpi 36438 bj-snglex 36966 bj-ismoore 37098 pibp19 37407 pibt2 37410 cover2g 37715 isnacs 42697 mrefg2 42700 aomclem8 43054 islssfg2 43064 lnr2i 43109 pwelg 43553 fsovd 44001 fsovcnvlem 44006 dssmapfvd 44010 clsk1independent 44039 ntrneibex 44066 mnuop123d 44255 stoweidlem50 46051 stoweidlem57 46058 issal 46315 omessle 46499 grtri 47944 vsetrec 49708 elpglem3 49718 pgindnf 49721 |
| Copyright terms: Public domain | W3C validator |