| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4008 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sspwd 4579 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 3 | eqimss2 4009 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | sspwd 4579 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 5 | 2, 4 | eqssd 3967 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: pweqi 4582 pweqd 4583 axpweq 5309 pwexg 5336 pwssun 5533 knatar 7335 pwdom 9099 canth2g 9101 pwfi 9275 fival 9370 marypha1lem 9391 marypha1 9392 wdompwdom 9538 canthwdom 9539 r1sucg 9729 ranklim 9804 r1pwALT 9806 isacn 10004 dfac12r 10107 dfac12k 10108 pwsdompw 10163 ackbij1lem8 10186 ackbij1lem14 10192 r1om 10203 fictb 10204 isfin1a 10252 isfin2 10254 isfin3 10256 isfin3ds 10289 isf33lem 10326 domtriomlem 10402 ttukeylem1 10469 elgch 10582 wunpw 10667 wunex2 10698 wuncval2 10707 eltskg 10710 eltsk2g 10711 tskpwss 10712 tskpw 10713 inar1 10735 grupw 10755 grothpw 10786 grothpwex 10787 axgroth6 10788 grothomex 10789 grothac 10790 axdc4uz 13956 hashpw 14408 hashbc 14425 ackbijnn 15801 incexclem 15809 rami 16993 ismre 17558 isacs 17619 isacs2 17621 acsfiel 17622 isacs1i 17625 mreacs 17626 isssc 17789 acsficl 18513 efmnd 18804 pmtrfval 19387 selvffval 22027 istopg 22789 istopon 22806 eltg 22851 tgdom 22872 ntrval 22930 nrmsep3 23249 iscmp 23282 cmpcov 23283 cmpsublem 23293 cmpsub 23294 tgcmp 23295 uncmp 23297 hauscmplem 23300 is1stc 23335 2ndc1stc 23345 llyi 23368 nllyi 23369 cldllycmp 23389 isfbas 23723 isfil 23741 filss 23747 fgval 23764 elfg 23765 isufil 23797 alexsublem 23938 alexsubb 23940 alexsubALTlem1 23941 alexsubALTlem2 23942 alexsubALTlem4 23944 alexsubALT 23945 restmetu 24465 bndth 24864 ovolicc2 25430 uhgreq12g 28999 uhgr0vb 29006 isupgr 29018 isumgr 29029 isuspgr 29086 isusgr 29087 isausgr 29098 lfuhgr1v0e 29188 nbuhgr2vtx1edgblem 29285 ex-pw 30365 indv 32782 iscref 33841 sigaval 34108 issiga 34109 isrnsiga 34110 issgon 34120 isldsys 34153 issros 34172 measval 34195 isrnmeas 34197 rankpwg 36164 neibastop1 36354 neibastop2lem 36355 neibastop2 36356 neibastop3 36357 neifg 36366 limsucncmpi 36440 bj-snglex 36968 bj-ismoore 37100 pibp19 37409 pibt2 37412 cover2g 37717 isnacs 42699 mrefg2 42702 aomclem8 43057 islssfg2 43067 lnr2i 43112 pwelg 43556 fsovd 44004 fsovcnvlem 44009 dssmapfvd 44013 clsk1independent 44042 ntrneibex 44069 mnuop123d 44258 stoweidlem50 46055 stoweidlem57 46062 issal 46319 omessle 46503 grtri 47943 vsetrec 49696 elpglem3 49706 pgindnf 49709 |
| Copyright terms: Public domain | W3C validator |