![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version |
Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4041 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sspwd 4616 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
3 | eqimss2 4042 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
4 | 3 | sspwd 4616 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
5 | 2, 4 | eqssd 4000 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: pweqi 4619 pweqd 4620 axpweq 5349 pwexg 5377 pwssun 5572 knatar 7354 pwdom 9129 canth2g 9131 pwfi 9178 pwfiOLD 9347 fival 9407 marypha1lem 9428 marypha1 9429 wdompwdom 9573 canthwdom 9574 r1sucg 9764 ranklim 9839 r1pwALT 9841 isacn 10039 dfac12r 10141 dfac12k 10142 pwsdompw 10199 ackbij1lem8 10222 ackbij1lem14 10228 r1om 10239 fictb 10240 isfin1a 10287 isfin2 10289 isfin3 10291 isfin3ds 10324 isf33lem 10361 domtriomlem 10437 ttukeylem1 10504 elgch 10617 wunpw 10702 wunex2 10733 wuncval2 10742 eltskg 10745 eltsk2g 10746 tskpwss 10747 tskpw 10748 inar1 10770 grupw 10790 grothpw 10821 grothpwex 10822 axgroth6 10823 grothomex 10824 grothac 10825 axdc4uz 13949 hashpw 14396 hashbc 14412 ackbijnn 15774 incexclem 15782 rami 16948 ismre 17534 isacs 17595 isacs2 17597 acsfiel 17598 isacs1i 17601 mreacs 17602 isssc 17767 acsficl 18500 efmnd 18751 pmtrfval 19318 selvffval 21679 istopg 22397 istopon 22414 eltg 22460 tgdom 22481 ntrval 22540 nrmsep3 22859 iscmp 22892 cmpcov 22893 cmpsublem 22903 cmpsub 22904 tgcmp 22905 uncmp 22907 hauscmplem 22910 is1stc 22945 2ndc1stc 22955 llyi 22978 nllyi 22979 cldllycmp 22999 isfbas 23333 isfil 23351 filss 23357 fgval 23374 elfg 23375 isufil 23407 alexsublem 23548 alexsubb 23550 alexsubALTlem1 23551 alexsubALTlem2 23552 alexsubALTlem4 23554 alexsubALT 23555 restmetu 24079 bndth 24474 ovolicc2 25039 uhgreq12g 28325 uhgr0vb 28332 isupgr 28344 isumgr 28355 isuspgr 28412 isusgr 28413 isausgr 28424 lfuhgr1v0e 28511 usgrexmpl 28520 nbuhgr2vtx1edgblem 28608 ex-pw 29682 iscref 32824 indv 33010 sigaval 33109 issiga 33110 isrnsiga 33111 issgon 33121 isldsys 33154 issros 33173 measval 33196 isrnmeas 33198 rankpwg 35141 neibastop1 35244 neibastop2lem 35245 neibastop2 35246 neibastop3 35247 neifg 35256 limsucncmpi 35330 bj-snglex 35854 bj-ismoore 35986 pibp19 36295 pibt2 36298 cover2g 36584 isnacs 41442 mrefg2 41445 aomclem8 41803 islssfg2 41813 lnr2i 41858 pwelg 42311 fsovd 42759 fsovcnvlem 42764 dssmapfvd 42768 clsk1independent 42797 ntrneibex 42824 mnuop123d 43021 stoweidlem50 44766 stoweidlem57 44773 issal 45030 omessle 45214 vsetrec 47748 elpglem3 47758 pgindnf 47761 |
Copyright terms: Public domain | W3C validator |