| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3988 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sspwd 4558 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 3 | eqimss2 3989 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | sspwd 4558 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 5 | 2, 4 | eqssd 3947 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 𝒫 cpw 4545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4547 |
| This theorem is referenced by: pweqi 4561 pweqd 4562 axpweq 5284 pwexg 5311 pwssun 5503 knatar 7286 pwdom 9037 canth2g 9039 pwfi 9198 fival 9291 marypha1lem 9312 marypha1 9313 wdompwdom 9459 canthwdom 9460 r1sucg 9657 ranklim 9732 r1pwALT 9734 isacn 9930 dfac12r 10033 dfac12k 10034 pwsdompw 10089 ackbij1lem8 10112 ackbij1lem14 10118 r1om 10129 fictb 10130 isfin1a 10178 isfin2 10180 isfin3 10182 isfin3ds 10215 isf33lem 10252 domtriomlem 10328 ttukeylem1 10395 elgch 10508 wunpw 10593 wunex2 10624 wuncval2 10633 eltskg 10636 eltsk2g 10637 tskpwss 10638 tskpw 10639 inar1 10661 grupw 10681 grothpw 10712 grothpwex 10713 axgroth6 10714 grothomex 10715 grothac 10716 axdc4uz 13886 hashpw 14338 hashbc 14355 ackbijnn 15730 incexclem 15738 rami 16922 ismre 17487 isacs 17552 isacs2 17554 acsfiel 17555 isacs1i 17558 mreacs 17559 isssc 17722 acsficl 18448 efmnd 18773 pmtrfval 19357 selvffval 22043 istopg 22805 istopon 22822 eltg 22867 tgdom 22888 ntrval 22946 nrmsep3 23265 iscmp 23298 cmpcov 23299 cmpsublem 23309 cmpsub 23310 tgcmp 23311 uncmp 23313 hauscmplem 23316 is1stc 23351 2ndc1stc 23361 llyi 23384 nllyi 23385 cldllycmp 23405 isfbas 23739 isfil 23757 filss 23763 fgval 23780 elfg 23781 isufil 23813 alexsublem 23954 alexsubb 23956 alexsubALTlem1 23957 alexsubALTlem2 23958 alexsubALTlem4 23960 alexsubALT 23961 restmetu 24480 bndth 24879 ovolicc2 25445 uhgreq12g 29038 uhgr0vb 29045 isupgr 29057 isumgr 29068 isuspgr 29125 isusgr 29126 isausgr 29137 lfuhgr1v0e 29227 nbuhgr2vtx1edgblem 29324 ex-pw 30401 indv 32825 esplyval 33577 iscref 33849 sigaval 34116 issiga 34117 isrnsiga 34118 issgon 34128 isldsys 34161 issros 34180 measval 34203 isrnmeas 34205 rankpwg 36203 neibastop1 36393 neibastop2lem 36394 neibastop2 36395 neibastop3 36396 neifg 36405 limsucncmpi 36479 bj-snglex 37007 bj-ismoore 37139 pibp19 37448 pibt2 37451 cover2g 37756 isnacs 42737 mrefg2 42740 aomclem8 43094 islssfg2 43104 lnr2i 43149 pwelg 43593 fsovd 44041 fsovcnvlem 44046 dssmapfvd 44050 clsk1independent 44079 ntrneibex 44106 mnuop123d 44295 stoweidlem50 46088 stoweidlem57 46095 issal 46352 omessle 46536 grtri 47971 vsetrec 49735 elpglem3 49745 pgindnf 49748 |
| Copyright terms: Public domain | W3C validator |