| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4002 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sspwd 4572 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 3 | eqimss2 4003 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | sspwd 4572 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 5 | 2, 4 | eqssd 3961 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: pweqi 4575 pweqd 4576 axpweq 5301 pwexg 5328 pwssun 5523 knatar 7314 pwdom 9070 canth2g 9072 pwfi 9244 fival 9339 marypha1lem 9360 marypha1 9361 wdompwdom 9507 canthwdom 9508 r1sucg 9698 ranklim 9773 r1pwALT 9775 isacn 9973 dfac12r 10076 dfac12k 10077 pwsdompw 10132 ackbij1lem8 10155 ackbij1lem14 10161 r1om 10172 fictb 10173 isfin1a 10221 isfin2 10223 isfin3 10225 isfin3ds 10258 isf33lem 10295 domtriomlem 10371 ttukeylem1 10438 elgch 10551 wunpw 10636 wunex2 10667 wuncval2 10676 eltskg 10679 eltsk2g 10680 tskpwss 10681 tskpw 10682 inar1 10704 grupw 10724 grothpw 10755 grothpwex 10756 axgroth6 10757 grothomex 10758 grothac 10759 axdc4uz 13925 hashpw 14377 hashbc 14394 ackbijnn 15770 incexclem 15778 rami 16962 ismre 17527 isacs 17588 isacs2 17590 acsfiel 17591 isacs1i 17594 mreacs 17595 isssc 17758 acsficl 18482 efmnd 18773 pmtrfval 19356 selvffval 21996 istopg 22758 istopon 22775 eltg 22820 tgdom 22841 ntrval 22899 nrmsep3 23218 iscmp 23251 cmpcov 23252 cmpsublem 23262 cmpsub 23263 tgcmp 23264 uncmp 23266 hauscmplem 23269 is1stc 23304 2ndc1stc 23314 llyi 23337 nllyi 23338 cldllycmp 23358 isfbas 23692 isfil 23710 filss 23716 fgval 23733 elfg 23734 isufil 23766 alexsublem 23907 alexsubb 23909 alexsubALTlem1 23910 alexsubALTlem2 23911 alexsubALTlem4 23913 alexsubALT 23914 restmetu 24434 bndth 24833 ovolicc2 25399 uhgreq12g 28968 uhgr0vb 28975 isupgr 28987 isumgr 28998 isuspgr 29055 isusgr 29056 isausgr 29067 lfuhgr1v0e 29157 nbuhgr2vtx1edgblem 29254 ex-pw 30331 indv 32748 iscref 33807 sigaval 34074 issiga 34075 isrnsiga 34076 issgon 34086 isldsys 34119 issros 34138 measval 34161 isrnmeas 34163 rankpwg 36130 neibastop1 36320 neibastop2lem 36321 neibastop2 36322 neibastop3 36323 neifg 36332 limsucncmpi 36406 bj-snglex 36934 bj-ismoore 37066 pibp19 37375 pibt2 37378 cover2g 37683 isnacs 42665 mrefg2 42668 aomclem8 43023 islssfg2 43033 lnr2i 43078 pwelg 43522 fsovd 43970 fsovcnvlem 43975 dssmapfvd 43979 clsk1independent 44008 ntrneibex 44035 mnuop123d 44224 stoweidlem50 46021 stoweidlem57 46028 issal 46285 omessle 46469 grtri 47912 vsetrec 49665 elpglem3 49675 pgindnf 49678 |
| Copyright terms: Public domain | W3C validator |