| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qseq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.) |
| Ref | Expression |
|---|---|
| qseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| qseq1d | ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | qseq1 8681 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rex 3057 df-qs 8628 |
| This theorem is referenced by: fracbas 33266 n0elim 38687 |
| Copyright terms: Public domain | W3C validator |