MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq1d Structured version   Visualization version   GIF version

Theorem qseq1d 8822
Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.)
Hypothesis
Ref Expression
qseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
qseq1d (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))

Proof of Theorem qseq1d
StepHypRef Expression
1 qseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 qseq1 8819 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
31, 2syl 17 1 (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-rex 3077  df-qs 8769
This theorem is referenced by:  fracbas  33272  n0elim  38606
  Copyright terms: Public domain W3C validator