Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elim Structured version   Visualization version   GIF version

Theorem n0elim 38673
Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
n0elim (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)

Proof of Theorem n0elim
StepHypRef Expression
1 n0el2 38356 . . . 4 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
21biimpi 216 . . 3 (¬ ∅ ∈ 𝐴 → dom ( E ↾ 𝐴) = 𝐴)
32qseq1d 8783 . 2 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = (𝐴 / ( E ↾ 𝐴)))
4 qsresid 38348 . . 3 (𝐴 / ( E ↾ 𝐴)) = (𝐴 / E )
5 qsid 8802 . . 3 (𝐴 / E ) = 𝐴
64, 5eqtri 2759 . 2 (𝐴 / ( E ↾ 𝐴)) = 𝐴
73, 6eqtrdi 2787 1 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4313   E cep 5557  ccnv 5658  dom cdm 5659  cres 5661   / cqs 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730
This theorem is referenced by:  n0el3  38674
  Copyright terms: Public domain W3C validator