| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0elim | Structured version Visualization version GIF version | ||
| Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| n0elim | ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0el2 38362 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
| 3 | 2 | qseq1d 8684 | . 2 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = (𝐴 / (◡ E ↾ 𝐴))) |
| 4 | qsresid 38358 | . . 3 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = (𝐴 / ◡ E ) | |
| 5 | qsid 8705 | . . 3 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
| 6 | 4, 5 | eqtri 2754 | . 2 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = 𝐴 |
| 7 | 3, 6 | eqtrdi 2782 | 1 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4283 E cep 5515 ◡ccnv 5615 dom cdm 5616 ↾ cres 5618 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: n0el3 38688 |
| Copyright terms: Public domain | W3C validator |