Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elim Structured version   Visualization version   GIF version

Theorem n0elim 38632
Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
n0elim (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)

Proof of Theorem n0elim
StepHypRef Expression
1 n0el2 38315 . . . 4 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
21biimpi 216 . . 3 (¬ ∅ ∈ 𝐴 → dom ( E ↾ 𝐴) = 𝐴)
32qseq1d 8803 . 2 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = (𝐴 / ( E ↾ 𝐴)))
4 qsresid 38307 . . 3 (𝐴 / ( E ↾ 𝐴)) = (𝐴 / E )
5 qsid 8822 . . 3 (𝐴 / E ) = 𝐴
64, 5eqtri 2763 . 2 (𝐴 / ( E ↾ 𝐴)) = 𝐴
73, 6eqtrdi 2791 1 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  c0 4339   E cep 5588  ccnv 5688  dom cdm 5689  cres 5691   / cqs 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746  df-qs 8750
This theorem is referenced by:  n0el3  38633
  Copyright terms: Public domain W3C validator