Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elim Structured version   Visualization version   GIF version

Theorem n0elim 38768
Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
n0elim (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)

Proof of Theorem n0elim
StepHypRef Expression
1 n0el2 38387 . . . 4 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
21biimpi 216 . . 3 (¬ ∅ ∈ 𝐴 → dom ( E ↾ 𝐴) = 𝐴)
32qseq1d 8690 . 2 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = (𝐴 / ( E ↾ 𝐴)))
4 qsresid 38383 . . 3 (𝐴 / ( E ↾ 𝐴)) = (𝐴 / E )
5 qsid 8711 . . 3 (𝐴 / E ) = 𝐴
64, 5eqtri 2756 . 2 (𝐴 / ( E ↾ 𝐴)) = 𝐴
73, 6eqtrdi 2784 1 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  c0 4282   E cep 5518  ccnv 5618  dom cdm 5619  cres 5621   / cqs 8627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-qs 8634
This theorem is referenced by:  n0el3  38769
  Copyright terms: Public domain W3C validator