MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2d Structured version   Visualization version   GIF version

Theorem qseq2d 8691
Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.)
Hypothesis
Ref Expression
qseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
qseq2d (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2d
StepHypRef Expression
1 qseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 qseq2 8688 . 2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
31, 2syl 17 1 (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   / cqs 8627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-qs 8634
This theorem is referenced by:  qustriv  33336  opprqusbas  33460  qsdrngi  33467  pstmval  33929  prjspnval2  42736  0prjspn  42746
  Copyright terms: Public domain W3C validator