| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qseq2d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.) |
| Ref | Expression |
|---|---|
| qseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| qseq2d | ⊢ (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | qseq2 8692 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 / cqs 8631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 |
| This theorem is referenced by: qustriv 33311 opprqusbas 33435 qsdrngi 33442 pstmval 33861 prjspnval2 42591 0prjspn 42601 |
| Copyright terms: Public domain | W3C validator |