MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2d Structured version   Visualization version   GIF version

Theorem qseq2d 8756
Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.)
Hypothesis
Ref Expression
qseq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
qseq2d (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2d
StepHypRef Expression
1 qseq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 qseq2 8754 . 2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
31, 2syl 17 1 (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   / cqs 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8701  df-qs 8705
This theorem is referenced by:  qustriv  32464  opprqusbas  32590  qsdrngi  32597  pstmval  32863  prjspnval2  41356  0prjspn  41366
  Copyright terms: Public domain W3C validator