Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qseq2d | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.) |
Ref | Expression |
---|---|
qseq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
qseq2d | ⊢ (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | qseq2 8354 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 / cqs 8298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rex 3076 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ec 8301 df-qs 8305 |
This theorem is referenced by: qustriv 31081 prjspnval2 39976 0prjspn 39984 |
Copyright terms: Public domain | W3C validator |