MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2d Structured version   Visualization version   GIF version

Theorem qseq2d 8513
Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021.)
Hypothesis
Ref Expression
qseq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
qseq2d (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2d
StepHypRef Expression
1 qseq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 qseq2 8511 . 2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
31, 2syl 17 1 (𝜑 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-qs 8462
This theorem is referenced by:  qustriv  31462  prjspnval2  40378  0prjspn  40386
  Copyright terms: Public domain W3C validator