![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fracbas | Structured version Visualization version GIF version |
Description: The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
Ref | Expression |
---|---|
fracbas.1 | ⊢ 𝐵 = (Base‘𝑅) |
fracbas.2 | ⊢ 𝐸 = (RLReg‘𝑅) |
fracbas.3 | ⊢ 𝐹 = ( Frac ‘𝑅) |
fracbas.4 | ⊢ ∼ = (𝑅 ~RL 𝐸) |
Ref | Expression |
---|---|
fracbas | ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fracbas.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2726 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2726 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2726 | . . 3 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
5 | eqid 2726 | . . 3 ⊢ (𝐵 × 𝐸) = (𝐵 × 𝐸) | |
6 | fracval 33154 | . . . 4 ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) | |
7 | fracbas.3 | . . . 4 ⊢ 𝐹 = ( Frac ‘𝑅) | |
8 | fracbas.2 | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
9 | 8 | oveq2i 7435 | . . . 4 ⊢ (𝑅 RLocal 𝐸) = (𝑅 RLocal (RLReg‘𝑅)) |
10 | 6, 7, 9 | 3eqtr4i 2764 | . . 3 ⊢ 𝐹 = (𝑅 RLocal 𝐸) |
11 | fracbas.4 | . . 3 ⊢ ∼ = (𝑅 ~RL 𝐸) | |
12 | id 22 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
13 | 8, 1 | rrgss 20680 | . . . 4 ⊢ 𝐸 ⊆ 𝐵 |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ V → 𝐸 ⊆ 𝐵) |
15 | 1, 2, 3, 4, 5, 10, 11, 12, 14 | rlocbas 33122 | . 2 ⊢ (𝑅 ∈ V → ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹)) |
16 | 0qs 8796 | . . 3 ⊢ (∅ / ∼ ) = ∅ | |
17 | fvprc 6893 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (Base‘𝑅) = ∅) | |
18 | 1, 17 | eqtrid 2778 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐵 = ∅) |
19 | 18 | xpeq1d 5711 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐵 × 𝐸) = (∅ × 𝐸)) |
20 | 0xp 5780 | . . . . 5 ⊢ (∅ × 𝐸) = ∅ | |
21 | 19, 20 | eqtrdi 2782 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐵 × 𝐸) = ∅) |
22 | 21 | qseq1d 8793 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((𝐵 × 𝐸) / ∼ ) = (∅ / ∼ )) |
23 | fvprc 6893 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = ∅) | |
24 | 7, 23 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐹 = ∅) |
25 | 24 | fveq2d 6905 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Base‘𝐹) = (Base‘∅)) |
26 | base0 17218 | . . . 4 ⊢ ∅ = (Base‘∅) | |
27 | 25, 26 | eqtr4di 2784 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Base‘𝐹) = ∅) |
28 | 16, 22, 27 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝑅 ∈ V → ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹)) |
29 | 15, 28 | pm2.61i 182 | 1 ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 ∅c0 4325 × cxp 5680 ‘cfv 6554 (class class class)co 7424 / cqs 8733 Basecbs 17213 .rcmulr 17267 0gc0g 17454 -gcsg 18930 RLRegcrlreg 20669 ~RL cerl 33108 RLocal crloc 33109 Frac cfrac 33152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-ec 8736 df-qs 8740 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-imas 17523 df-qus 17524 df-rlreg 20672 df-rloc 33111 df-frac 33153 |
This theorem is referenced by: idomsubr 33159 |
Copyright terms: Public domain | W3C validator |