| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fracbas | Structured version Visualization version GIF version | ||
| Description: The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| Ref | Expression |
|---|---|
| fracbas.1 | ⊢ 𝐵 = (Base‘𝑅) |
| fracbas.2 | ⊢ 𝐸 = (RLReg‘𝑅) |
| fracbas.3 | ⊢ 𝐹 = ( Frac ‘𝑅) |
| fracbas.4 | ⊢ ∼ = (𝑅 ~RL 𝐸) |
| Ref | Expression |
|---|---|
| fracbas | ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fracbas.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 5 | eqid 2731 | . . 3 ⊢ (𝐵 × 𝐸) = (𝐵 × 𝐸) | |
| 6 | fracval 33262 | . . . 4 ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) | |
| 7 | fracbas.3 | . . . 4 ⊢ 𝐹 = ( Frac ‘𝑅) | |
| 8 | fracbas.2 | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 9 | 8 | oveq2i 7352 | . . . 4 ⊢ (𝑅 RLocal 𝐸) = (𝑅 RLocal (RLReg‘𝑅)) |
| 10 | 6, 7, 9 | 3eqtr4i 2764 | . . 3 ⊢ 𝐹 = (𝑅 RLocal 𝐸) |
| 11 | fracbas.4 | . . 3 ⊢ ∼ = (𝑅 ~RL 𝐸) | |
| 12 | id 22 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
| 13 | 8, 1 | rrgss 20612 | . . . 4 ⊢ 𝐸 ⊆ 𝐵 |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ V → 𝐸 ⊆ 𝐵) |
| 15 | 1, 2, 3, 4, 5, 10, 11, 12, 14 | rlocbas 33226 | . 2 ⊢ (𝑅 ∈ V → ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹)) |
| 16 | 0qs 8682 | . . 3 ⊢ (∅ / ∼ ) = ∅ | |
| 17 | fvprc 6809 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (Base‘𝑅) = ∅) | |
| 18 | 1, 17 | eqtrid 2778 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐵 = ∅) |
| 19 | 18 | xpeq1d 5640 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐵 × 𝐸) = (∅ × 𝐸)) |
| 20 | 0xp 5710 | . . . . 5 ⊢ (∅ × 𝐸) = ∅ | |
| 21 | 19, 20 | eqtrdi 2782 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐵 × 𝐸) = ∅) |
| 22 | 21 | qseq1d 8679 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((𝐵 × 𝐸) / ∼ ) = (∅ / ∼ )) |
| 23 | fvprc 6809 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = ∅) | |
| 24 | 7, 23 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐹 = ∅) |
| 25 | 24 | fveq2d 6821 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Base‘𝐹) = (Base‘∅)) |
| 26 | base0 17120 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 27 | 25, 26 | eqtr4di 2784 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Base‘𝐹) = ∅) |
| 28 | 16, 22, 27 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝑅 ∈ V → ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹)) |
| 29 | 15, 28 | pm2.61i 182 | 1 ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 × cxp 5609 ‘cfv 6476 (class class class)co 7341 / cqs 8616 Basecbs 17115 .rcmulr 17157 0gc0g 17338 -gcsg 18843 RLRegcrlreg 20601 ~RL cerl 33212 RLocal crloc 33213 Frac cfrac 33260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-imas 17407 df-qus 17408 df-rlreg 20604 df-rloc 33215 df-frac 33261 |
| This theorem is referenced by: idomsubr 33267 |
| Copyright terms: Public domain | W3C validator |