Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fracbas Structured version   Visualization version   GIF version

Theorem fracbas 33262
Description: The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.)
Hypotheses
Ref Expression
fracbas.1 𝐵 = (Base‘𝑅)
fracbas.2 𝐸 = (RLReg‘𝑅)
fracbas.3 𝐹 = ( Frac ‘𝑅)
fracbas.4 = (𝑅 ~RL 𝐸)
Assertion
Ref Expression
fracbas ((𝐵 × 𝐸) / ) = (Base‘𝐹)

Proof of Theorem fracbas
StepHypRef Expression
1 fracbas.1 . . 3 𝐵 = (Base‘𝑅)
2 eqid 2730 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2730 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2730 . . 3 (-g𝑅) = (-g𝑅)
5 eqid 2730 . . 3 (𝐵 × 𝐸) = (𝐵 × 𝐸)
6 fracval 33261 . . . 4 ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))
7 fracbas.3 . . . 4 𝐹 = ( Frac ‘𝑅)
8 fracbas.2 . . . . 5 𝐸 = (RLReg‘𝑅)
98oveq2i 7401 . . . 4 (𝑅 RLocal 𝐸) = (𝑅 RLocal (RLReg‘𝑅))
106, 7, 93eqtr4i 2763 . . 3 𝐹 = (𝑅 RLocal 𝐸)
11 fracbas.4 . . 3 = (𝑅 ~RL 𝐸)
12 id 22 . . 3 (𝑅 ∈ V → 𝑅 ∈ V)
138, 1rrgss 20618 . . . 4 𝐸𝐵
1413a1i 11 . . 3 (𝑅 ∈ V → 𝐸𝐵)
151, 2, 3, 4, 5, 10, 11, 12, 14rlocbas 33225 . 2 (𝑅 ∈ V → ((𝐵 × 𝐸) / ) = (Base‘𝐹))
16 0qs 8739 . . 3 (∅ / ) = ∅
17 fvprc 6853 . . . . . . 7 𝑅 ∈ V → (Base‘𝑅) = ∅)
181, 17eqtrid 2777 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
1918xpeq1d 5670 . . . . 5 𝑅 ∈ V → (𝐵 × 𝐸) = (∅ × 𝐸))
20 0xp 5740 . . . . 5 (∅ × 𝐸) = ∅
2119, 20eqtrdi 2781 . . . 4 𝑅 ∈ V → (𝐵 × 𝐸) = ∅)
2221qseq1d 8736 . . 3 𝑅 ∈ V → ((𝐵 × 𝐸) / ) = (∅ / ))
23 fvprc 6853 . . . . . 6 𝑅 ∈ V → ( Frac ‘𝑅) = ∅)
247, 23eqtrid 2777 . . . . 5 𝑅 ∈ V → 𝐹 = ∅)
2524fveq2d 6865 . . . 4 𝑅 ∈ V → (Base‘𝐹) = (Base‘∅))
26 base0 17191 . . . 4 ∅ = (Base‘∅)
2725, 26eqtr4di 2783 . . 3 𝑅 ∈ V → (Base‘𝐹) = ∅)
2816, 22, 273eqtr4a 2791 . 2 𝑅 ∈ V → ((𝐵 × 𝐸) / ) = (Base‘𝐹))
2915, 28pm2.61i 182 1 ((𝐵 × 𝐸) / ) = (Base‘𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  c0 4299   × cxp 5639  cfv 6514  (class class class)co 7390   / cqs 8673  Basecbs 17186  .rcmulr 17228  0gc0g 17409  -gcsg 18874  RLRegcrlreg 20607   ~RL cerl 33211   RLocal crloc 33212   Frac cfrac 33259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-imas 17478  df-qus 17479  df-rlreg 20610  df-rloc 33214  df-frac 33260
This theorem is referenced by:  idomsubr  33266
  Copyright terms: Public domain W3C validator