MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2i Structured version   Visualization version   GIF version

Theorem qseq2i 8489
Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.)
Hypothesis
Ref Expression
qseq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
qseq2i (𝐶 / 𝐴) = (𝐶 / 𝐵)

Proof of Theorem qseq2i
StepHypRef Expression
1 qseq2i.1 . 2 𝐴 = 𝐵
2 qseq2 8488 . 2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
31, 2ax-mp 5 1 (𝐶 / 𝐴) = (𝐶 / 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543   / cqs 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5587  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-ec 8435  df-qs 8439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator