MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2i Structured version   Visualization version   GIF version

Theorem qseq2i 8804
Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.)
Hypothesis
Ref Expression
qseq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
qseq2i (𝐶 / 𝐴) = (𝐶 / 𝐵)

Proof of Theorem qseq2i
StepHypRef Expression
1 qseq2i.1 . 2 𝐴 = 𝐵
2 qseq2 8803 . 2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
31, 2ax-mp 5 1 (𝐶 / 𝐴) = (𝐶 / 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   / cqs 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ec 8748  df-qs 8752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator