MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgisline Structured version   Visualization version   GIF version

Theorem tgisline 27868
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgisline.1 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tgisline (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
Distinct variable groups:   π‘₯,𝐴,𝑦   π‘₯,𝐡,𝑦   π‘₯,𝐺,𝑦   π‘₯,𝐼,𝑦   πœ‘,π‘₯,𝑦
Allowed substitution hints:   𝐿(π‘₯,𝑦)

Proof of Theorem tgisline
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.l . . . . . 6 𝐿 = (LineGβ€˜πΊ)
3 tglineelsb2.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
4 tglineelsb2.g . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54adantr 482 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝐺 ∈ TarskiG)
6 simprl 770 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ π‘₯ ∈ 𝐡)
7 simprr 772 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))
87eldifad 3960 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝑦 ∈ 𝐡)
9 eldifsn 4790 . . . . . . . . 9 (𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↔ (𝑦 ∈ 𝐡 ∧ 𝑦 β‰  π‘₯))
107, 9sylib 217 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ (𝑦 ∈ 𝐡 ∧ 𝑦 β‰  π‘₯))
1110simprd 497 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝑦 β‰  π‘₯)
1211necomd 2997 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ π‘₯ β‰  𝑦)
131, 2, 3, 5, 6, 8, 12tglngval 27792 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ (π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
1413, 12jca 513 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ ((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦))
1514ralrimivva 3201 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐡 βˆ– {π‘₯})((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦))
16 tgisline.1 . . . . 5 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
171, 2, 3tglng 27787 . . . . . . 7 (𝐺 ∈ TarskiG β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
184, 17syl 17 . . . . . 6 (πœ‘ β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
1918rneqd 5936 . . . . 5 (πœ‘ β†’ ran 𝐿 = ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
2016, 19eleqtrd 2836 . . . 4 (πœ‘ β†’ 𝐴 ∈ ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
21 eqid 2733 . . . . . 6 (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
2221elrnmpog 7541 . . . . 5 (𝐴 ∈ ran 𝐿 β†’ (𝐴 ∈ ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) ↔ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
2316, 22syl 17 . . . 4 (πœ‘ β†’ (𝐴 ∈ ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) ↔ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
2420, 23mpbid 231 . . 3 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
2515, 24r19.29d2r 3141 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
26 difss 4131 . . . 4 (𝐡 βˆ– {π‘₯}) βŠ† 𝐡
27 simpr 486 . . . . . . 7 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
28 simpll 766 . . . . . . 7 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ (π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
2927, 28eqtr4d 2776 . . . . . 6 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ 𝐴 = (π‘₯𝐿𝑦))
30 simplr 768 . . . . . 6 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ π‘₯ β‰  𝑦)
3129, 30jca 513 . . . . 5 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
3231reximi 3085 . . . 4 (βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
33 ssrexv 4051 . . . 4 ((𝐡 βˆ– {π‘₯}) βŠ† 𝐡 β†’ (βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦) β†’ βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)))
3426, 32, 33mpsyl 68 . . 3 (βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
3534reximi 3085 . 2 (βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
3625, 35syl 17 1 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ w3o 1087   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071  {crab 3433   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  ran crn 5677  β€˜cfv 6541  (class class class)co 7406   ∈ cmpo 7408  Basecbs 17141  TarskiGcstrkg 27668  Itvcitv 27674  LineGclng 27675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-trkg 27694
This theorem is referenced by:  tglnne  27869  tglndim0  27870  tglinethru  27877  tglnne0  27881  tglnpt2  27882  footexALT  27959  footex  27962  opptgdim2  27986
  Copyright terms: Public domain W3C validator