| Step | Hyp | Ref
| Expression |
| 1 | | tglineelsb2.p |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | tglineelsb2.l |
. . . . . 6
⊢ 𝐿 = (LineG‘𝐺) |
| 3 | | tglineelsb2.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
| 4 | | tglineelsb2.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝐺 ∈ TarskiG) |
| 6 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥 ∈ 𝐵) |
| 7 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ∈ (𝐵 ∖ {𝑥})) |
| 8 | 7 | eldifad 3963 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ∈ 𝐵) |
| 9 | | eldifsn 4786 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 𝑥)) |
| 10 | 7, 9 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 𝑥)) |
| 11 | 10 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ≠ 𝑥) |
| 12 | 11 | necomd 2996 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥 ≠ 𝑦) |
| 13 | 1, 2, 3, 5, 6, 8, 12 | tglngval 28559 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 14 | 13, 12 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ {𝑥}))) → ((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦)) |
| 15 | 14 | ralrimivva 3202 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐵 ∖ {𝑥})((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦)) |
| 16 | | tgisline.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| 17 | 1, 2, 3 | tglng 28554 |
. . . . . . 7
⊢ (𝐺 ∈ TarskiG → 𝐿 = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 18 | 4, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐿 = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 19 | 18 | rneqd 5949 |
. . . . 5
⊢ (𝜑 → ran 𝐿 = ran (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 20 | 16, 19 | eleqtrd 2843 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ran (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 21 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 22 | 21 | elrnmpog 7568 |
. . . . 5
⊢ (𝐴 ∈ ran 𝐿 → (𝐴 ∈ ran (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 23 | 16, 22 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ ran (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 24 | 20, 23 | mpbid 232 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 25 | 15, 24 | r19.29d2r 3140 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 26 | | difss 4136 |
. . . 4
⊢ (𝐵 ∖ {𝑥}) ⊆ 𝐵 |
| 27 | | simpr 484 |
. . . . . . 7
⊢ ((((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 28 | | simpll 767 |
. . . . . . 7
⊢ ((((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 29 | 27, 28 | eqtr4d 2780 |
. . . . . 6
⊢ ((((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = (𝑥𝐿𝑦)) |
| 30 | | simplr 769 |
. . . . . 6
⊢ ((((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑥 ≠ 𝑦) |
| 31 | 29, 30 | jca 511 |
. . . . 5
⊢ ((((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 32 | 31 | reximi 3084 |
. . . 4
⊢
(∃𝑦 ∈
(𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 33 | | ssrexv 4053 |
. . . 4
⊢ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 → (∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦) → ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦))) |
| 34 | 26, 32, 33 | mpsyl 68 |
. . 3
⊢
(∃𝑦 ∈
(𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 35 | 34 | reximi 3084 |
. 2
⊢
(∃𝑥 ∈
𝐵 ∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥 ≠ 𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 36 | 25, 35 | syl 17 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |