MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgisline Structured version   Visualization version   GIF version

Theorem tgisline 28313
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgisline.1 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tgisline (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
Distinct variable groups:   π‘₯,𝐴,𝑦   π‘₯,𝐡,𝑦   π‘₯,𝐺,𝑦   π‘₯,𝐼,𝑦   πœ‘,π‘₯,𝑦
Allowed substitution hints:   𝐿(π‘₯,𝑦)

Proof of Theorem tgisline
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.l . . . . . 6 𝐿 = (LineGβ€˜πΊ)
3 tglineelsb2.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
4 tglineelsb2.g . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54adantr 480 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝐺 ∈ TarskiG)
6 simprl 768 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ π‘₯ ∈ 𝐡)
7 simprr 770 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))
87eldifad 3952 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝑦 ∈ 𝐡)
9 eldifsn 4782 . . . . . . . . 9 (𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↔ (𝑦 ∈ 𝐡 ∧ 𝑦 β‰  π‘₯))
107, 9sylib 217 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ (𝑦 ∈ 𝐡 ∧ 𝑦 β‰  π‘₯))
1110simprd 495 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ 𝑦 β‰  π‘₯)
1211necomd 2988 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ π‘₯ β‰  𝑦)
131, 2, 3, 5, 6, 8, 12tglngval 28237 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ (π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
1413, 12jca 511 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ (𝐡 βˆ– {π‘₯}))) β†’ ((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦))
1514ralrimivva 3192 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐡 βˆ– {π‘₯})((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦))
16 tgisline.1 . . . . 5 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
171, 2, 3tglng 28232 . . . . . . 7 (𝐺 ∈ TarskiG β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
184, 17syl 17 . . . . . 6 (πœ‘ β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
1918rneqd 5927 . . . . 5 (πœ‘ β†’ ran 𝐿 = ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
2016, 19eleqtrd 2827 . . . 4 (πœ‘ β†’ 𝐴 ∈ ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
21 eqid 2724 . . . . . 6 (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
2221elrnmpog 7536 . . . . 5 (𝐴 ∈ ran 𝐿 β†’ (𝐴 ∈ ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) ↔ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
2316, 22syl 17 . . . 4 (πœ‘ β†’ (𝐴 ∈ ran (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) ↔ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
2420, 23mpbid 231 . . 3 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
2515, 24r19.29d2r 3132 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
26 difss 4123 . . . 4 (𝐡 βˆ– {π‘₯}) βŠ† 𝐡
27 simpr 484 . . . . . . 7 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
28 simpll 764 . . . . . . 7 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ (π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
2927, 28eqtr4d 2767 . . . . . 6 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ 𝐴 = (π‘₯𝐿𝑦))
30 simplr 766 . . . . . 6 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ π‘₯ β‰  𝑦)
3129, 30jca 511 . . . . 5 ((((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
3231reximi 3076 . . . 4 (βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
33 ssrexv 4043 . . . 4 ((𝐡 βˆ– {π‘₯}) βŠ† 𝐡 β†’ (βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦) β†’ βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)))
3426, 32, 33mpsyl 68 . . 3 (βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
3534reximi 3076 . 2 (βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ (𝐡 βˆ– {π‘₯})(((π‘₯𝐿𝑦) = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} ∧ π‘₯ β‰  𝑦) ∧ 𝐴 = {𝑧 ∈ 𝐡 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
3625, 35syl 17 1 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ w3o 1083   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062  {crab 3424   βˆ– cdif 3937   βŠ† wss 3940  {csn 4620  ran crn 5667  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  Basecbs 17142  TarskiGcstrkg 28113  Itvcitv 28119  LineGclng 28120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-trkg 28139
This theorem is referenced by:  tglnne  28314  tglndim0  28315  tglinethru  28322  tglnne0  28326  tglnpt2  28327  footexALT  28404  footex  28407  opptgdim2  28431
  Copyright terms: Public domain W3C validator