MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgisline Structured version   Visualization version   GIF version

Theorem tgisline 25939
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgisline.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tgisline (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem tgisline
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 474 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝐺 ∈ TarskiG)
6 simprl 789 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝐵)
7 simprr 791 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ∈ (𝐵 ∖ {𝑥}))
87eldifad 3810 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝐵)
9 eldifsn 4536 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
107, 9sylib 210 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑦𝐵𝑦𝑥))
1110simprd 491 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝑥)
1211necomd 3054 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝑦)
131, 2, 3, 5, 6, 8, 12tglngval 25863 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
1413, 12jca 509 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → ((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
1514ralrimivva 3180 . . 3 (𝜑 → ∀𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
16 tgisline.1 . . . . 5 (𝜑𝐴 ∈ ran 𝐿)
171, 2, 3tglng 25858 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
184, 17syl 17 . . . . . 6 (𝜑𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
1918rneqd 5585 . . . . 5 (𝜑 → ran 𝐿 = ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2016, 19eleqtrd 2908 . . . 4 (𝜑𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
21 eqid 2825 . . . . . 6 (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2221elrnmpt2g 7032 . . . . 5 (𝐴 ∈ ran 𝐿 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2316, 22syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2420, 23mpbid 224 . . 3 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2515, 24r19.29d2r 3290 . 2 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
26 difss 3964 . . . 4 (𝐵 ∖ {𝑥}) ⊆ 𝐵
27 simpr 479 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
28 simpll 785 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2927, 28eqtr4d 2864 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = (𝑥𝐿𝑦))
30 simplr 787 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑥𝑦)
3129, 30jca 509 . . . . 5 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3231reximi 3219 . . . 4 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
33 ssrexv 3892 . . . 4 ((𝐵 ∖ {𝑥}) ⊆ 𝐵 → (∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)))
3426, 32, 33mpsyl 68 . . 3 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3534reximi 3219 . 2 (∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3625, 35syl 17 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3o 1112   = wceq 1658  wcel 2166  wne 2999  wrex 3118  {crab 3121  cdif 3795  wss 3798  {csn 4397  ran crn 5343  cfv 6123  (class class class)co 6905  cmpt2 6907  Basecbs 16222  TarskiGcstrkg 25742  Itvcitv 25748  LineGclng 25749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-trkg 25765
This theorem is referenced by:  tglnne  25940  tglndim0  25941  tglinethru  25948  tglnne0  25952  tglnpt2  25953  footex  26030  opptgdim2  26054
  Copyright terms: Public domain W3C validator