MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgisline Structured version   Visualization version   GIF version

Theorem tgisline 28650
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgisline.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tgisline (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem tgisline
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝐺 ∈ TarskiG)
6 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝐵)
7 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ∈ (𝐵 ∖ {𝑥}))
87eldifad 3975 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝐵)
9 eldifsn 4791 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
107, 9sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑦𝐵𝑦𝑥))
1110simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝑥)
1211necomd 2994 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝑦)
131, 2, 3, 5, 6, 8, 12tglngval 28574 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
1413, 12jca 511 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → ((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
1514ralrimivva 3200 . . 3 (𝜑 → ∀𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
16 tgisline.1 . . . . 5 (𝜑𝐴 ∈ ran 𝐿)
171, 2, 3tglng 28569 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
184, 17syl 17 . . . . . 6 (𝜑𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
1918rneqd 5952 . . . . 5 (𝜑 → ran 𝐿 = ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2016, 19eleqtrd 2841 . . . 4 (𝜑𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
21 eqid 2735 . . . . . 6 (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2221elrnmpog 7568 . . . . 5 (𝐴 ∈ ran 𝐿 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2316, 22syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2420, 23mpbid 232 . . 3 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2515, 24r19.29d2r 3138 . 2 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
26 difss 4146 . . . 4 (𝐵 ∖ {𝑥}) ⊆ 𝐵
27 simpr 484 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
28 simpll 767 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2927, 28eqtr4d 2778 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = (𝑥𝐿𝑦))
30 simplr 769 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑥𝑦)
3129, 30jca 511 . . . . 5 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3231reximi 3082 . . . 4 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
33 ssrexv 4065 . . . 4 ((𝐵 ∖ {𝑥}) ⊆ 𝐵 → (∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)))
3426, 32, 33mpsyl 68 . . 3 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3534reximi 3082 . 2 (∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3625, 35syl 17 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  cdif 3960  wss 3963  {csn 4631  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-trkg 28476
This theorem is referenced by:  tglnne  28651  tglndim0  28652  tglinethru  28659  tglnne0  28663  tglnpt2  28664  footexALT  28741  footex  28744  opptgdim2  28768
  Copyright terms: Public domain W3C validator