MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgisline Structured version   Visualization version   GIF version

Theorem tgisline 28607
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgisline.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tgisline (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem tgisline
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝐺 ∈ TarskiG)
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝐵)
7 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ∈ (𝐵 ∖ {𝑥}))
87eldifad 3923 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝐵)
9 eldifsn 4746 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
107, 9sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑦𝐵𝑦𝑥))
1110simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝑥)
1211necomd 2980 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝑦)
131, 2, 3, 5, 6, 8, 12tglngval 28531 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
1413, 12jca 511 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → ((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
1514ralrimivva 3178 . . 3 (𝜑 → ∀𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
16 tgisline.1 . . . . 5 (𝜑𝐴 ∈ ran 𝐿)
171, 2, 3tglng 28526 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
184, 17syl 17 . . . . . 6 (𝜑𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
1918rneqd 5891 . . . . 5 (𝜑 → ran 𝐿 = ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2016, 19eleqtrd 2830 . . . 4 (𝜑𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
21 eqid 2729 . . . . . 6 (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2221elrnmpog 7504 . . . . 5 (𝐴 ∈ ran 𝐿 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2316, 22syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2420, 23mpbid 232 . . 3 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2515, 24r19.29d2r 3120 . 2 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
26 difss 4095 . . . 4 (𝐵 ∖ {𝑥}) ⊆ 𝐵
27 simpr 484 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
28 simpll 766 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2927, 28eqtr4d 2767 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = (𝑥𝐿𝑦))
30 simplr 768 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑥𝑦)
3129, 30jca 511 . . . . 5 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3231reximi 3067 . . . 4 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
33 ssrexv 4013 . . . 4 ((𝐵 ∖ {𝑥}) ⊆ 𝐵 → (∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)))
3426, 32, 33mpsyl 68 . . 3 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3534reximi 3067 . 2 (∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3625, 35syl 17 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  cdif 3908  wss 3911  {csn 4585  ran crn 5632  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  TarskiGcstrkg 28407  Itvcitv 28413  LineGclng 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-trkg 28433
This theorem is referenced by:  tglnne  28608  tglndim0  28609  tglinethru  28616  tglnne0  28620  tglnpt2  28621  footexALT  28698  footex  28701  opptgdim2  28725
  Copyright terms: Public domain W3C validator