| Step | Hyp | Ref
| Expression |
| 1 | | rexpssxrxp 11285 |
. . 3
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
| 2 | | df-ico 13373 |
. . . . 5
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 3 | 2 | ixxf 13377 |
. . . 4
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
| 4 | | ffn 6711 |
. . . 4
⊢
([,):(ℝ* × ℝ*)⟶𝒫
ℝ* → [,) Fn (ℝ* ×
ℝ*)) |
| 5 | | fnssresb 6665 |
. . . 4
⊢ ([,) Fn
(ℝ* × ℝ*) → (([,) ↾ (ℝ
× ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ)
⊆ (ℝ* × ℝ*))) |
| 6 | 3, 4, 5 | mp2b 10 |
. . 3
⊢ (([,)
↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*)) |
| 7 | 1, 6 | mpbir 231 |
. 2
⊢ ([,)
↾ (ℝ × ℝ)) Fn (ℝ ×
ℝ) |
| 8 | | eqid 2736 |
. . . . 5
⊢ ([,)
↾ (ℝ × ℝ)) = ([,) ↾ (ℝ ×
ℝ)) |
| 9 | 8 | icorempo 37374 |
. . . 4
⊢ ([,)
↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 10 | 9 | rneqi 5922 |
. . 3
⊢ ran ([,)
↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 11 | | ssrab2 4060 |
. . . . . 6
⊢ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ |
| 12 | | reex 11225 |
. . . . . . 7
⊢ ℝ
∈ V |
| 13 | 12 | elpw2 5309 |
. . . . . 6
⊢ ({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ) |
| 14 | 11, 13 | mpbir 231 |
. . . . 5
⊢ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 15 | 14 | rgen2w 3057 |
. . . 4
⊢
∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 16 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 17 | 16 | rnmpo 7545 |
. . . . . . 7
⊢ ran
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) = {𝑙 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}} |
| 18 | 17 | eqabri 2879 |
. . . . . 6
⊢ (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 19 | | simpl 482 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 20 | | simpr 484 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 21 | 19, 20 | r19.29d2r 3128 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 22 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → (𝑙 ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫
ℝ)) |
| 23 | 22 | biimparc 479 |
. . . . . . . . . 10
⊢ (({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ) |
| 24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)) |
| 25 | 24 | rexlimivv 3187 |
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ ({𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ) |
| 26 | 21, 25 | syl 17 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ) |
| 27 | 26 | ex 412 |
. . . . . 6
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝑙 ∈ 𝒫 ℝ)) |
| 28 | 18, 27 | biimtrid 242 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ → (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)) |
| 29 | 28 | ssrdv 3969 |
. . . 4
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ⊆ 𝒫
ℝ) |
| 30 | 15, 29 | ax-mp 5 |
. . 3
⊢ ran
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ⊆ 𝒫
ℝ |
| 31 | 10, 30 | eqsstri 4010 |
. 2
⊢ ran ([,)
↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ |
| 32 | | df-f 6540 |
. 2
⊢ (([,)
↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫
ℝ ↔ (([,) ↾ (ℝ × ℝ)) Fn (ℝ ×
ℝ) ∧ ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫
ℝ)) |
| 33 | 7, 31, 32 | mpbir2an 711 |
1
⊢ ([,)
↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫
ℝ |