Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreresf Structured version   Visualization version   GIF version

Theorem icoreresf 37335
Description: Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020.)
Assertion
Ref Expression
icoreresf ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ

Proof of Theorem icoreresf
Dummy variables 𝑥 𝑦 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpssxrxp 11304 . . 3 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2 df-ico 13390 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxf 13394 . . . 4 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
4 ffn 6737 . . . 4 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → [,) Fn (ℝ* × ℝ*))
5 fnssresb 6691 . . . 4 ([,) Fn (ℝ* × ℝ*) → (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)))
63, 4, 5mp2b 10 . . 3 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
71, 6mpbir 231 . 2 ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
8 eqid 2735 . . . . 5 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 37334 . . . 4 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
109rneqi 5951 . . 3 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
11 ssrab2 4090 . . . . . 6 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ
12 reex 11244 . . . . . . 7 ℝ ∈ V
1312elpw2 5340 . . . . . 6 ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ)
1411, 13mpbir 231 . . . . 5 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
1514rgen2w 3064 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
16 eqid 2735 . . . . . . . 8 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
1716rnmpo 7566 . . . . . . 7 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = {𝑙 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}}
1817eqabri 2883 . . . . . 6 (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
19 simpl 482 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
20 simpr 484 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
2119, 20r19.29d2r 3138 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
22 eleq1 2827 . . . . . . . . . . 11 (𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑙 ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ))
2322biimparc 479 . . . . . . . . . 10 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2423a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2524rexlimivv 3199 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2621, 25syl 17 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2726ex 412 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑙 ∈ 𝒫 ℝ))
2818, 27biimtrid 242 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2928ssrdv 4001 . . . 4 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ)
3015, 29ax-mp 5 . . 3 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ
3110, 30eqsstri 4030 . 2 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
32 df-f 6567 . 2 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ ↔ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ))
337, 31, 32mpbir2an 711 1 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963  𝒫 cpw 4605   class class class wbr 5148   × cxp 5687  ran crn 5690  cres 5691   Fn wfn 6558  wf 6559  cmpo 7433  cr 11152  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390
This theorem is referenced by:  icoreelrnab  37337  icoreunrn  37342
  Copyright terms: Public domain W3C validator