Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreresf Structured version   Visualization version   GIF version

Theorem icoreresf 34504
Description: Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020.)
Assertion
Ref Expression
icoreresf ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ

Proof of Theorem icoreresf
Dummy variables 𝑥 𝑦 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpssxrxp 10678 . . 3 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2 df-ico 12737 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxf 12741 . . . 4 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
4 ffn 6510 . . . 4 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → [,) Fn (ℝ* × ℝ*))
5 fnssresb 6465 . . . 4 ([,) Fn (ℝ* × ℝ*) → (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)))
63, 4, 5mp2b 10 . . 3 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
71, 6mpbir 232 . 2 ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
8 eqid 2825 . . . . 5 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 34503 . . . 4 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
109rneqi 5805 . . 3 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
11 ssrab2 4059 . . . . . 6 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ
12 reex 10620 . . . . . . 7 ℝ ∈ V
1312elpw2 5244 . . . . . 6 ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ)
1411, 13mpbir 232 . . . . 5 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
1514rgen2w 3155 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
16 eqid 2825 . . . . . . . 8 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
1716rnmpo 7277 . . . . . . 7 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = {𝑙 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}}
1817abeq2i 2952 . . . . . 6 (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
19 simpl 483 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
20 simpr 485 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
2119, 20r19.29d2r 3339 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
22 eleq1 2904 . . . . . . . . . . 11 (𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑙 ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ))
2322biimparc 480 . . . . . . . . . 10 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2423a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2524rexlimivv 3296 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2621, 25syl 17 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2726ex 413 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑙 ∈ 𝒫 ℝ))
2818, 27syl5bi 243 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2928ssrdv 3976 . . . 4 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ)
3015, 29ax-mp 5 . . 3 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ
3110, 30eqsstri 4004 . 2 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
32 df-f 6355 . 2 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ ↔ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ))
337, 31, 32mpbir2an 707 1 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3142  wrex 3143  {crab 3146  wss 3939  𝒫 cpw 4541   class class class wbr 5062   × cxp 5551  ran crn 5554  cres 5555   Fn wfn 6346  wf 6347  cmpo 7153  cr 10528  *cxr 10666   < clt 10667  cle 10668  [,)cico 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ico 12737
This theorem is referenced by:  icoreelrnab  34506  icoreunrn  34511
  Copyright terms: Public domain W3C validator