Step | Hyp | Ref
| Expression |
1 | | rexpssxrxp 10738 |
. . 3
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
2 | | df-ico 12799 |
. . . . 5
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
3 | 2 | ixxf 12803 |
. . . 4
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
4 | | ffn 6504 |
. . . 4
⊢
([,):(ℝ* × ℝ*)⟶𝒫
ℝ* → [,) Fn (ℝ* ×
ℝ*)) |
5 | | fnssresb 6458 |
. . . 4
⊢ ([,) Fn
(ℝ* × ℝ*) → (([,) ↾ (ℝ
× ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ)
⊆ (ℝ* × ℝ*))) |
6 | 3, 4, 5 | mp2b 10 |
. . 3
⊢ (([,)
↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*)) |
7 | 1, 6 | mpbir 234 |
. 2
⊢ ([,)
↾ (ℝ × ℝ)) Fn (ℝ ×
ℝ) |
8 | | eqid 2759 |
. . . . 5
⊢ ([,)
↾ (ℝ × ℝ)) = ([,) ↾ (ℝ ×
ℝ)) |
9 | 8 | icorempo 35084 |
. . . 4
⊢ ([,)
↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
10 | 9 | rneqi 5784 |
. . 3
⊢ ran ([,)
↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
11 | | ssrab2 3987 |
. . . . . 6
⊢ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ |
12 | | reex 10680 |
. . . . . . 7
⊢ ℝ
∈ V |
13 | 12 | elpw2 5220 |
. . . . . 6
⊢ ({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ) |
14 | 11, 13 | mpbir 234 |
. . . . 5
⊢ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
15 | 14 | rgen2w 3084 |
. . . 4
⊢
∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
16 | | eqid 2759 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
17 | 16 | rnmpo 7286 |
. . . . . . 7
⊢ ran
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) = {𝑙 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}} |
18 | 17 | abeq2i 2888 |
. . . . . 6
⊢ (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
19 | | simpl 486 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
20 | | simpr 488 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
21 | 19, 20 | r19.29d2r 3257 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
22 | | eleq1 2840 |
. . . . . . . . . . 11
⊢ (𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → (𝑙 ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫
ℝ)) |
23 | 22 | biimparc 483 |
. . . . . . . . . 10
⊢ (({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ) |
24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (({𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)) |
25 | 24 | rexlimivv 3217 |
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ ({𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ) |
26 | 21, 25 | syl 17 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ) |
27 | 26 | ex 416 |
. . . . . 6
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑙 = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝑙 ∈ 𝒫 ℝ)) |
28 | 18, 27 | syl5bi 245 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ → (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)) |
29 | 28 | ssrdv 3901 |
. . . 4
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ {𝑧 ∈ ℝ
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ⊆ 𝒫
ℝ) |
30 | 15, 29 | ax-mp 5 |
. . 3
⊢ ran
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ⊆ 𝒫
ℝ |
31 | 10, 30 | eqsstri 3929 |
. 2
⊢ ran ([,)
↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ |
32 | | df-f 6345 |
. 2
⊢ (([,)
↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫
ℝ ↔ (([,) ↾ (ℝ × ℝ)) Fn (ℝ ×
ℝ) ∧ ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫
ℝ)) |
33 | 7, 31, 32 | mpbir2an 710 |
1
⊢ ([,)
↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫
ℝ |