Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreresf Structured version   Visualization version   GIF version

Theorem icoreresf 35523
Description: Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020.)
Assertion
Ref Expression
icoreresf ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ

Proof of Theorem icoreresf
Dummy variables 𝑥 𝑦 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpssxrxp 11020 . . 3 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2 df-ico 13085 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxf 13089 . . . 4 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
4 ffn 6600 . . . 4 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → [,) Fn (ℝ* × ℝ*))
5 fnssresb 6554 . . . 4 ([,) Fn (ℝ* × ℝ*) → (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)))
63, 4, 5mp2b 10 . . 3 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
71, 6mpbir 230 . 2 ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
8 eqid 2738 . . . . 5 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 35522 . . . 4 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
109rneqi 5846 . . 3 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
11 ssrab2 4013 . . . . . 6 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ
12 reex 10962 . . . . . . 7 ℝ ∈ V
1312elpw2 5269 . . . . . 6 ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ)
1411, 13mpbir 230 . . . . 5 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
1514rgen2w 3077 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
16 eqid 2738 . . . . . . . 8 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
1716rnmpo 7407 . . . . . . 7 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = {𝑙 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}}
1817abeq2i 2875 . . . . . 6 (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
19 simpl 483 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
20 simpr 485 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
2119, 20r19.29d2r 3264 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
22 eleq1 2826 . . . . . . . . . . 11 (𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑙 ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ))
2322biimparc 480 . . . . . . . . . 10 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2423a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2524rexlimivv 3221 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2621, 25syl 17 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2726ex 413 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑙 ∈ 𝒫 ℝ))
2818, 27syl5bi 241 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2928ssrdv 3927 . . . 4 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ)
3015, 29ax-mp 5 . . 3 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ
3110, 30eqsstri 3955 . 2 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
32 df-f 6437 . 2 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ ↔ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ))
337, 31, 32mpbir2an 708 1 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  𝒫 cpw 4533   class class class wbr 5074   × cxp 5587  ran crn 5590  cres 5591   Fn wfn 6428  wf 6429  cmpo 7277  cr 10870  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085
This theorem is referenced by:  icoreelrnab  35525  icoreunrn  35530
  Copyright terms: Public domain W3C validator