Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreresf Structured version   Visualization version   GIF version

Theorem icoreresf 37318
Description: Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020.)
Assertion
Ref Expression
icoreresf ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ

Proof of Theorem icoreresf
Dummy variables 𝑥 𝑦 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpssxrxp 11335 . . 3 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2 df-ico 13413 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxf 13417 . . . 4 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
4 ffn 6747 . . . 4 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → [,) Fn (ℝ* × ℝ*))
5 fnssresb 6702 . . . 4 ([,) Fn (ℝ* × ℝ*) → (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)))
63, 4, 5mp2b 10 . . 3 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
71, 6mpbir 231 . 2 ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
8 eqid 2740 . . . . 5 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 37317 . . . 4 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
109rneqi 5962 . . 3 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
11 ssrab2 4103 . . . . . 6 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ
12 reex 11275 . . . . . . 7 ℝ ∈ V
1312elpw2 5352 . . . . . 6 ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ)
1411, 13mpbir 231 . . . . 5 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
1514rgen2w 3072 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
16 eqid 2740 . . . . . . . 8 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
1716rnmpo 7583 . . . . . . 7 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) = {𝑙 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}}
1817eqabri 2888 . . . . . 6 (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
19 simpl 482 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
20 simpr 484 . . . . . . . . 9 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
2119, 20r19.29d2r 3146 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
22 eleq1 2832 . . . . . . . . . . 11 (𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑙 ∈ 𝒫 ℝ ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ))
2322biimparc 479 . . . . . . . . . 10 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2423a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2524rexlimivv 3207 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2621, 25syl 17 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ)
2726ex 412 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑙 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑙 ∈ 𝒫 ℝ))
2818, 27biimtrid 242 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → (𝑙 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝑙 ∈ 𝒫 ℝ))
2928ssrdv 4014 . . . 4 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ)
3015, 29ax-mp 5 . . 3 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}) ⊆ 𝒫 ℝ
3110, 30eqsstri 4043 . 2 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
32 df-f 6577 . 2 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ ↔ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ))
337, 31, 32mpbir2an 710 1 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cmpo 7450  cr 11183  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413
This theorem is referenced by:  icoreelrnab  37320  icoreunrn  37325
  Copyright terms: Public domain W3C validator