Step | Hyp | Ref
| Expression |
1 | | breq 5076 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝐹‘𝑥)𝑤(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
2 | 1 | imbi2d 341 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
3 | 2 | ralbidv 3112 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
4 | 3 | rexralbidv 3230 |
. . . . 5
⊢ (𝑤 = 𝑊 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
5 | | ucnprima.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
6 | | ucnprima.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
7 | | ucnprima.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
8 | | isucn 23430 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))))) |
9 | 6, 7, 8 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))))) |
10 | 5, 9 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)))) |
11 | 10 | simprd 496 |
. . . . 5
⊢ (𝜑 → ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))) |
12 | | ucnprima.4 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
13 | 4, 11, 12 | rspcdva 3562 |
. . . 4
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
14 | | simplll 772 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝜑) |
15 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
16 | | ustssxp 23356 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
17 | 6, 16 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
18 | 17 | sselda 3921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ (𝑋 × 𝑋)) |
19 | 18 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ (𝑋 × 𝑋)) |
20 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ 𝑟) |
21 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
22 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → 𝑝 ∈ (𝑋 × 𝑋)) |
23 | | elxp2 5613 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝑋 × 𝑋) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉) |
25 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈𝑥, 𝑦〉) |
26 | 25 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟)) |
27 | 26 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟)) |
28 | | df-br 5075 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑟𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟) |
29 | 27, 28 | bitr4di 289 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 𝑥𝑟𝑦)) |
30 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 ∈ (𝑋 × 𝑋)) |
31 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 ∈
V |
32 | | ucnprima.5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
33 | 6, 7, 5, 12, 32 | ucnimalem 23432 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
34 | 33 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝑋 × 𝑋) ∧ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 ∈ V) → (𝐺‘𝑝) = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
35 | 30, 31, 34 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐺‘𝑝) = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
36 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈𝑥, 𝑦〉) |
37 | | 1st2nd2 7870 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ (𝑋 × 𝑋) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
38 | 30, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
39 | 36, 38 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 〈𝑥, 𝑦〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
40 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑥 ∈ V |
41 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑦 ∈ V |
42 | 40, 41 | opth 5391 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑥, 𝑦〉 = 〈(1st
‘𝑝), (2nd
‘𝑝)〉 ↔
(𝑥 = (1st
‘𝑝) ∧ 𝑦 = (2nd ‘𝑝))) |
43 | 39, 42 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑥 = (1st ‘𝑝) ∧ 𝑦 = (2nd ‘𝑝))) |
44 | 43 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑥 = (1st ‘𝑝)) |
45 | 44 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐹‘𝑥) = (𝐹‘(1st ‘𝑝))) |
46 | 43 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑦 = (2nd ‘𝑝)) |
47 | 46 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐹‘𝑦) = (𝐹‘(2nd ‘𝑝))) |
48 | 45, 47 | opeq12d 4812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
49 | 35, 48 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐺‘𝑝) = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
50 | 49 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑝) ∈ 𝑊 ↔ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ 𝑊)) |
51 | | df-br 5075 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥)𝑊(𝐹‘𝑦) ↔ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ 𝑊) |
52 | 50, 51 | bitr4di 289 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑝) ∈ 𝑊 ↔ (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
53 | 29, 52 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
54 | 53 | exbiri 808 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 = 〈𝑥, 𝑦〉 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
55 | 54 | reximdv 3202 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
56 | 55 | reximdv 3202 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
57 | 24, 56 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) |
58 | 57 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) |
59 | 21, 58 | r19.29d2r 3264 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
60 | | pm3.35 800 |
. . . . . . . . . . . 12
⊢ (((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
61 | 60 | rexlimivw 3211 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
62 | 61 | rexlimivw 3211 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
63 | 59, 62 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
64 | 63 | imp 407 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 ∈ 𝑟) → (𝐺‘𝑝) ∈ 𝑊) |
65 | 14, 15, 19, 20, 64 | syl1111anc 837 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → (𝐺‘𝑝) ∈ 𝑊) |
66 | 65 | ralrimiva 3103 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) → ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊) |
67 | 66 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
68 | 67 | reximdva 3203 |
. . . 4
⊢ (𝜑 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
69 | 13, 68 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊) |
70 | 32 | mpofun 7398 |
. . . . . 6
⊢ Fun 𝐺 |
71 | | opex 5379 |
. . . . . . . 8
⊢
〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V |
72 | 32, 71 | dmmpo 7911 |
. . . . . . 7
⊢ dom 𝐺 = (𝑋 × 𝑋) |
73 | 17, 72 | sseqtrrdi 3972 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
74 | | funimass4 6834 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
75 | 70, 73, 74 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
76 | 75 | biimprd 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) |
77 | 76 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) |
78 | | r19.29r 3185 |
. . 3
⊢
((∃𝑟 ∈
𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ ∀𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → ∃𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊))) |
79 | 69, 77, 78 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊))) |
80 | | pm3.35 800 |
. . 3
⊢
((∀𝑝 ∈
𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → (𝐺 “ 𝑟) ⊆ 𝑊) |
81 | 80 | reximi 3178 |
. 2
⊢
(∃𝑟 ∈
𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
82 | 79, 81 | syl 17 |
1
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |