MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnima Structured version   Visualization version   GIF version

Theorem ucnima 22887
Description: An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnima (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦,𝑟   𝐹,𝑟   𝑥,𝐺,𝑦   𝑈,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥   𝑊,𝑟,𝑥,𝑦   𝑋,𝑟   𝑌,𝑟,𝑥   𝜑,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑟)   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem ucnima
Dummy variables 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5032 . . . . . . . 8 (𝑤 = 𝑊 → ((𝐹𝑥)𝑤(𝐹𝑦) ↔ (𝐹𝑥)𝑊(𝐹𝑦)))
21imbi2d 344 . . . . . . 7 (𝑤 = 𝑊 → ((𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
32ralbidv 3162 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
43rexralbidv 3260 . . . . 5 (𝑤 = 𝑊 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) ↔ ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
5 ucnprima.3 . . . . . . 7 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
6 ucnprima.1 . . . . . . . 8 (𝜑𝑈 ∈ (UnifOn‘𝑋))
7 ucnprima.2 . . . . . . . 8 (𝜑𝑉 ∈ (UnifOn‘𝑌))
8 isucn 22884 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)))))
96, 7, 8syl2anc 587 . . . . . . 7 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)))))
105, 9mpbid 235 . . . . . 6 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦))))
1110simprd 499 . . . . 5 (𝜑 → ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)))
12 ucnprima.4 . . . . 5 (𝜑𝑊𝑉)
134, 11, 12rspcdva 3573 . . . 4 (𝜑 → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)))
14 simplll 774 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → 𝜑)
15 simplr 768 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)))
16 ustssxp 22810 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
176, 16sylan 583 . . . . . . . . . 10 ((𝜑𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
1817sselda 3915 . . . . . . . . 9 (((𝜑𝑟𝑈) ∧ 𝑝𝑟) → 𝑝 ∈ (𝑋 × 𝑋))
1918adantlr 714 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → 𝑝 ∈ (𝑋 × 𝑋))
20 simpr 488 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → 𝑝𝑟)
21 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)))
22 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → 𝑝 ∈ (𝑋 × 𝑋))
23 elxp2 5543 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩)
2422, 23sylib 221 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩)
25 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 = ⟨𝑥, 𝑦⟩)
2625eleq1d 2874 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = ⟨𝑥, 𝑦⟩) → (𝑝𝑟 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑟))
2726adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝑝𝑟 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑟))
28 df-br 5031 . . . . . . . . . . . . . . . . . 18 (𝑥𝑟𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑟)
2927, 28syl6bbr 292 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝑝𝑟𝑥𝑟𝑦))
30 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 ∈ (𝑋 × 𝑋))
31 opex 5321 . . . . . . . . . . . . . . . . . . . . 21 ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ ∈ V
32 ucnprima.5 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
336, 7, 5, 12, 32ucnimalem 22886 . . . . . . . . . . . . . . . . . . . . . 22 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
3433fvmpt2 6756 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ (𝑋 × 𝑋) ∧ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ ∈ V) → (𝐺𝑝) = ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
3530, 31, 34sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐺𝑝) = ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
36 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 = ⟨𝑥, 𝑦⟩)
37 1st2nd2 7710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ (𝑋 × 𝑋) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
3830, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
3936, 38eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
40 vex 3444 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ V
41 vex 3444 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
4240, 41opth 5333 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨(1st𝑝), (2nd𝑝)⟩ ↔ (𝑥 = (1st𝑝) ∧ 𝑦 = (2nd𝑝)))
4339, 42sylib 221 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝑥 = (1st𝑝) ∧ 𝑦 = (2nd𝑝)))
4443simpld 498 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑥 = (1st𝑝))
4544fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) = (𝐹‘(1st𝑝)))
4643simprd 499 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑦 = (2nd𝑝))
4746fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) = (𝐹‘(2nd𝑝)))
4845, 47opeq12d 4773 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
4935, 48eqtr4d 2836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐺𝑝) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5049eleq1d 2874 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((𝐺𝑝) ∈ 𝑊 ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ 𝑊))
51 df-br 5031 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥)𝑊(𝐹𝑦) ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ 𝑊)
5250, 51syl6bbr 292 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((𝐺𝑝) ∈ 𝑊 ↔ (𝐹𝑥)𝑊(𝐹𝑦)))
5329, 52imbi12d 348 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((𝑝𝑟 → (𝐺𝑝) ∈ 𝑊) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
5453exbiri 810 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
5554reximdv 3232 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
5655reximdv 3232 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑥𝑋𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
5724, 56mpd 15 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊)))
5857adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊)))
5921, 58r19.29d2r 3291 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
60 pm3.35 802 . . . . . . . . . . . 12 (((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6160rexlimivw 3241 . . . . . . . . . . 11 (∃𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6261rexlimivw 3241 . . . . . . . . . 10 (∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6359, 62syl 17 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6463imp 410 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝𝑟) → (𝐺𝑝) ∈ 𝑊)
6514, 15, 19, 20, 64syl1111anc 838 . . . . . . 7 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → (𝐺𝑝) ∈ 𝑊)
6665ralrimiva 3149 . . . . . 6 (((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) → ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊)
6766ex 416 . . . . 5 ((𝜑𝑟𝑈) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
6867reximdva 3233 . . . 4 (𝜑 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → ∃𝑟𝑈𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
6913, 68mpd 15 . . 3 (𝜑 → ∃𝑟𝑈𝑝𝑟 (𝐺𝑝) ∈ 𝑊)
7032mpofun 7255 . . . . . 6 Fun 𝐺
71 opex 5321 . . . . . . . 8 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
7232, 71dmmpo 7751 . . . . . . 7 dom 𝐺 = (𝑋 × 𝑋)
7317, 72sseqtrrdi 3966 . . . . . 6 ((𝜑𝑟𝑈) → 𝑟 ⊆ dom 𝐺)
74 funimass4 6705 . . . . . 6 ((Fun 𝐺𝑟 ⊆ dom 𝐺) → ((𝐺𝑟) ⊆ 𝑊 ↔ ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
7570, 73, 74sylancr 590 . . . . 5 ((𝜑𝑟𝑈) → ((𝐺𝑟) ⊆ 𝑊 ↔ ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
7675biimprd 251 . . . 4 ((𝜑𝑟𝑈) → (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊))
7776ralrimiva 3149 . . 3 (𝜑 → ∀𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊))
78 r19.29r 3217 . . 3 ((∃𝑟𝑈𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ ∀𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)) → ∃𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)))
7969, 77, 78syl2anc 587 . 2 (𝜑 → ∃𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)))
80 pm3.35 802 . . 3 ((∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)) → (𝐺𝑟) ⊆ 𝑊)
8180reximi 3206 . 2 (∃𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)) → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
8279, 81syl 17 1 (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881  cop 4531   class class class wbr 5030   × cxp 5517  dom cdm 5519  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  UnifOncust 22805   Cnucucn 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-ust 22806  df-ucn 22882
This theorem is referenced by:  ucnprima  22888
  Copyright terms: Public domain W3C validator