Step | Hyp | Ref
| Expression |
1 | | breq 4843 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝐹‘𝑥)𝑤(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
2 | 1 | imbi2d 332 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
3 | 2 | ralbidv 3165 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
4 | 3 | rexralbidv 3237 |
. . . . 5
⊢ (𝑤 = 𝑊 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
5 | | ucnprima.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
6 | | ucnprima.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
7 | | ucnprima.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
8 | | isucn 22406 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))))) |
9 | 6, 7, 8 | syl2anc 580 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))))) |
10 | 5, 9 | mpbid 224 |
. . . . . 6
⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)))) |
11 | 10 | simprd 490 |
. . . . 5
⊢ (𝜑 → ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))) |
12 | | ucnprima.4 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
13 | 4, 11, 12 | rspcdva 3501 |
. . . 4
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
14 | | simplll 792 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝜑) |
15 | | simplr 786 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
16 | 14, 15 | jca 508 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → (𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
17 | | ustssxp 22332 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
18 | 6, 17 | sylan 576 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
19 | 18 | sselda 3796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ (𝑋 × 𝑋)) |
20 | 19 | adantlr 707 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ (𝑋 × 𝑋)) |
21 | | simpr 478 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ 𝑟) |
22 | | simplr 786 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
23 | | simpr 478 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → 𝑝 ∈ (𝑋 × 𝑋)) |
24 | | elxp2 5334 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝑋 × 𝑋) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉) |
25 | 23, 24 | sylib 210 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉) |
26 | | simpr 478 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈𝑥, 𝑦〉) |
27 | 26 | eleq1d 2861 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟)) |
28 | 27 | adantlr 707 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟)) |
29 | | df-br 4842 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑟𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟) |
30 | 28, 29 | syl6bbr 281 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 𝑥𝑟𝑦)) |
31 | | simplr 786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 ∈ (𝑋 × 𝑋)) |
32 | | opex 5121 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 ∈
V |
33 | | ucnprima.5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
34 | 6, 7, 5, 12, 33 | ucnimalem 22408 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
35 | 34 | fvmpt2 6514 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝑋 × 𝑋) ∧ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 ∈ V) → (𝐺‘𝑝) = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
36 | 31, 32, 35 | sylancl 581 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐺‘𝑝) = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
37 | | simpr 478 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈𝑥, 𝑦〉) |
38 | | 1st2nd2 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ (𝑋 × 𝑋) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
39 | 31, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
40 | 37, 39 | eqtr3d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 〈𝑥, 𝑦〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
41 | | vex 3386 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑥 ∈ V |
42 | | vex 3386 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑦 ∈ V |
43 | 41, 42 | opth 5133 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑥, 𝑦〉 = 〈(1st
‘𝑝), (2nd
‘𝑝)〉 ↔
(𝑥 = (1st
‘𝑝) ∧ 𝑦 = (2nd ‘𝑝))) |
44 | 40, 43 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑥 = (1st ‘𝑝) ∧ 𝑦 = (2nd ‘𝑝))) |
45 | 44 | simpld 489 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑥 = (1st ‘𝑝)) |
46 | 45 | fveq2d 6413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐹‘𝑥) = (𝐹‘(1st ‘𝑝))) |
47 | 44 | simprd 490 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑦 = (2nd ‘𝑝)) |
48 | 47 | fveq2d 6413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐹‘𝑦) = (𝐹‘(2nd ‘𝑝))) |
49 | 46, 48 | opeq12d 4599 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
50 | 36, 49 | eqtr4d 2834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐺‘𝑝) = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
51 | 50 | eleq1d 2861 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑝) ∈ 𝑊 ↔ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ 𝑊)) |
52 | | df-br 4842 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥)𝑊(𝐹‘𝑦) ↔ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ 𝑊) |
53 | 51, 52 | syl6bbr 281 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑝) ∈ 𝑊 ↔ (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
54 | 30, 53 | imbi12d 336 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
55 | 54 | exbiri 846 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 = 〈𝑥, 𝑦〉 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
56 | 55 | reximdv 3194 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
57 | 56 | reximdv 3194 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
58 | 25, 57 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) |
59 | 58 | adantlr 707 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) |
60 | 22, 59 | r19.29d2r 3259 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
61 | | pm3.35 838 |
. . . . . . . . . . . 12
⊢ (((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
62 | 61 | rexlimivw 3208 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
63 | 62 | rexlimivw 3208 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
64 | 60, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
65 | 64 | imp 396 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 ∈ 𝑟) → (𝐺‘𝑝) ∈ 𝑊) |
66 | 16, 20, 21, 65 | syl21anc 867 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → (𝐺‘𝑝) ∈ 𝑊) |
67 | 66 | ralrimiva 3145 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) → ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊) |
68 | 67 | ex 402 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
69 | 68 | reximdva 3195 |
. . . 4
⊢ (𝜑 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
70 | 13, 69 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊) |
71 | 33 | mpt2fun 6994 |
. . . . . 6
⊢ Fun 𝐺 |
72 | | opex 5121 |
. . . . . . . 8
⊢
〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V |
73 | 33, 72 | dmmpt2 7474 |
. . . . . . 7
⊢ dom 𝐺 = (𝑋 × 𝑋) |
74 | 18, 73 | syl6sseqr 3846 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
75 | | funimass4 6470 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
76 | 71, 74, 75 | sylancr 582 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
77 | 76 | biimprd 240 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) |
78 | 77 | ralrimiva 3145 |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) |
79 | | r19.29r 3252 |
. . 3
⊢
((∃𝑟 ∈
𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ ∀𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → ∃𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊))) |
80 | 70, 78, 79 | syl2anc 580 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊))) |
81 | | pm3.35 838 |
. . 3
⊢
((∀𝑝 ∈
𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → (𝐺 “ 𝑟) ⊆ 𝑊) |
82 | 81 | reximi 3189 |
. 2
⊢
(∃𝑟 ∈
𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
83 | 80, 82 | syl 17 |
1
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |