Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-negex12 Structured version   Visualization version   GIF version

Theorem sn-negex12 40707
Description: A combination of cnegex 11262 and cnegex2 11263, this proof takes cnre 11078 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.)
Assertion
Ref Expression
sn-negex12 (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
Distinct variable group:   𝐴,𝑏

Proof of Theorem sn-negex12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11036 . . . . . . . . . 10 i ∈ ℂ
21a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → i ∈ ℂ)
3 rernegcl 40663 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
43recnd 11109 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℂ)
52, 4mulcld 11101 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 − 𝑦)) ∈ ℂ)
65adantl 483 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (0 − 𝑦)) ∈ ℂ)
7 rernegcl 40663 . . . . . . . . 9 (𝑥 ∈ ℝ → (0 − 𝑥) ∈ ℝ)
87recnd 11109 . . . . . . . 8 (𝑥 ∈ ℝ → (0 − 𝑥) ∈ ℂ)
98adantr 482 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 − 𝑥) ∈ ℂ)
106, 9addcld 11100 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (0 − 𝑥)) ∈ ℂ)
1110adantl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((i · (0 − 𝑦)) + (0 − 𝑥)) ∈ ℂ)
12 eqeq1 2741 . . . . . 6 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) ↔ ((i · (0 − 𝑦)) + (0 − 𝑥)) = ((i · (0 − 𝑦)) + (0 − 𝑥))))
1312adantl 483 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥))) → (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) ↔ ((i · (0 − 𝑦)) + (0 − 𝑥)) = ((i · (0 − 𝑦)) + (0 − 𝑥))))
14 eqidd 2738 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((i · (0 − 𝑦)) + (0 − 𝑥)) = ((i · (0 − 𝑦)) + (0 − 𝑥)))
1511, 13, 14rspcedvd 3576 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)))
1615ralrimivva 3194 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)))
17 cnre 11078 . . 3 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
1816, 17r19.29d2r 3134 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) ∧ 𝐴 = (𝑥 + (i · 𝑦))))
19 oveq1 7349 . . . . . . . . . . . 12 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 + (i · (0 − 𝑦))) = ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))))
2019adantl 483 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + (i · (0 − 𝑦))) = ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))))
21 recn 11067 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2221adantr 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
231a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
24 recn 11067 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
2524adantl 483 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
2623, 25mulcld 11101 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
2722, 26, 6addassd 11103 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) = (𝑥 + ((i · 𝑦) + (i · (0 − 𝑦)))))
28 renegid 40665 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 + (0 − 𝑦)) = 0)
2928oveq2d 7358 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (i · (𝑦 + (0 − 𝑦))) = (i · 0))
302, 24, 4adddid 11105 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (i · (𝑦 + (0 − 𝑦))) = ((i · 𝑦) + (i · (0 − 𝑦))))
31 sn-it0e0 40706 . . . . . . . . . . . . . . . . 17 (i · 0) = 0
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (i · 0) = 0)
3329, 30, 323eqtr3d 2785 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((i · 𝑦) + (i · (0 − 𝑦))) = 0)
3433oveq2d 7358 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑥 + ((i · 𝑦) + (i · (0 − 𝑦)))) = (𝑥 + 0))
3534adantl 483 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + ((i · 𝑦) + (i · (0 − 𝑦)))) = (𝑥 + 0))
36 readdid1 40701 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 + 0) = 𝑥)
3736adantr 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 0) = 𝑥)
3827, 35, 373eqtrd 2781 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) = 𝑥)
3938ad2antlr 725 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) = 𝑥)
4020, 39eqtrd 2777 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + (i · (0 − 𝑦))) = 𝑥)
4140oveq1d 7357 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + (i · (0 − 𝑦))) + (0 − 𝑥)) = (𝑥 + (0 − 𝑥)))
42 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 ∈ ℂ)
436ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · (0 − 𝑦)) ∈ ℂ)
449ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 − 𝑥) ∈ ℂ)
4542, 43, 44addassd 11103 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + (i · (0 − 𝑦))) + (0 − 𝑥)) = (𝐴 + ((i · (0 − 𝑦)) + (0 − 𝑥))))
46 renegid 40665 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + (0 − 𝑥)) = 0)
4746adantr 482 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (0 − 𝑥)) = 0)
4847ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 + (0 − 𝑥)) = 0)
4941, 45, 483eqtr3d 2785 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0)
50 oveq2 7350 . . . . . . . . 9 (𝐴 = (𝑥 + (i · 𝑦)) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + 𝐴) = (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))))
5122, 26addcld 11100 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
526, 9, 51addassd 11103 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = ((i · (0 − 𝑦)) + ((0 − 𝑥) + (𝑥 + (i · 𝑦)))))
539, 22, 26addassd 11103 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0 − 𝑥) + 𝑥) + (i · 𝑦)) = ((0 − 𝑥) + (𝑥 + (i · 𝑦))))
5453oveq2d 7358 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (((0 − 𝑥) + 𝑥) + (i · 𝑦))) = ((i · (0 − 𝑦)) + ((0 − 𝑥) + (𝑥 + (i · 𝑦)))))
55 renegid2 40705 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → ((0 − 𝑥) + 𝑥) = 0)
5655adantr 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 − 𝑥) + 𝑥) = 0)
5756oveq1d 7357 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0 − 𝑥) + 𝑥) + (i · 𝑦)) = (0 + (i · 𝑦)))
58 sn-addid2 40696 . . . . . . . . . . . . . . 15 ((i · 𝑦) ∈ ℂ → (0 + (i · 𝑦)) = (i · 𝑦))
5926, 58syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + (i · 𝑦)) = (i · 𝑦))
6057, 59eqtrd 2777 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0 − 𝑥) + 𝑥) + (i · 𝑦)) = (i · 𝑦))
6160oveq2d 7358 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (((0 − 𝑥) + 𝑥) + (i · 𝑦))) = ((i · (0 − 𝑦)) + (i · 𝑦)))
624adantl 483 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 − 𝑦) ∈ ℂ)
6323, 62, 25adddid 11105 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · ((0 − 𝑦) + 𝑦)) = ((i · (0 − 𝑦)) + (i · 𝑦)))
64 renegid2 40705 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((0 − 𝑦) + 𝑦) = 0)
6564adantl 483 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 − 𝑦) + 𝑦) = 0)
6665oveq2d 7358 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · ((0 − 𝑦) + 𝑦)) = (i · 0))
6766, 31eqtrdi 2793 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · ((0 − 𝑦) + 𝑦)) = 0)
6861, 63, 673eqtr2d 2783 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (((0 − 𝑥) + 𝑥) + (i · 𝑦))) = 0)
6952, 54, 683eqtr2d 2783 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = 0)
7069adantl 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = 0)
7150, 70sylan9eqr 2799 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + 𝐴) = 0)
7249, 71jca 513 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0 ∧ (((i · (0 − 𝑦)) + (0 − 𝑥)) + 𝐴) = 0))
73 oveq2 7350 . . . . . . . . 9 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → (𝐴 + 𝑏) = (𝐴 + ((i · (0 − 𝑦)) + (0 − 𝑥))))
7473eqeq1d 2739 . . . . . . . 8 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ((𝐴 + 𝑏) = 0 ↔ (𝐴 + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0))
75 oveq1 7349 . . . . . . . . 9 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → (𝑏 + 𝐴) = (((i · (0 − 𝑦)) + (0 − 𝑥)) + 𝐴))
7675eqeq1d 2739 . . . . . . . 8 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ((𝑏 + 𝐴) = 0 ↔ (((i · (0 − 𝑦)) + (0 − 𝑥)) + 𝐴) = 0))
7774, 76anbi12d 632 . . . . . . 7 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → (((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0) ↔ ((𝐴 + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0 ∧ (((i · (0 − 𝑦)) + (0 − 𝑥)) + 𝐴) = 0)))
7872, 77syl5ibrcom 247 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
7978reximdv 3164 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
8079expimpd 455 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 = (𝑥 + (i · 𝑦)) ∧ ∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥))) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
8180ancomsd 467 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
8281rexlimdvva 3202 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∃𝑏 ∈ ℂ 𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
8318, 82mpd 15 1 (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wrex 3071  (class class class)co 7342  cc 10975  cr 10976  0cc0 10977  ici 10979   + caddc 10980   · cmul 10982   cresub 40657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-po 5537  df-so 5538  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-ltxr 11120  df-2 12142  df-3 12143  df-resub 40658
This theorem is referenced by:  sn-negex  40708  sn-negex2  40709  addinvcom  40722
  Copyright terms: Public domain W3C validator