Step | Hyp | Ref
| Expression |
1 | | cnre 11287 |
. 2
⊢ (𝐴 ∈ ℂ →
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝐴 = (𝑥 + (i · 𝑦))) |
2 | | oveq2 7456 |
. . . . . . . 8
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → ((𝑥 + (i · 𝑦)) + 𝑏) = ((𝑥 + (i · 𝑦)) + ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)))) |
3 | 2 | eqeq1d 2742 |
. . . . . . 7
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ↔ ((𝑥 + (i · 𝑦)) + ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) = 0)) |
4 | | oveq1 7455 |
. . . . . . . 8
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → (𝑏 + (𝑥 + (i · 𝑦))) = (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦)))) |
5 | 4 | eqeq1d 2742 |
. . . . . . 7
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → ((𝑏 + (𝑥 + (i · 𝑦))) = 0 ↔ (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = 0)) |
6 | 3, 5 | anbi12d 631 |
. . . . . 6
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → ((((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0) ↔ (((𝑥 + (i · 𝑦)) + ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) = 0 ∧ (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = 0))) |
7 | | ax-icn 11243 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
8 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → i ∈
ℂ) |
9 | | rernegcl 42347 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (0
−ℝ 𝑦) ∈ ℝ) |
10 | 9 | recnd 11318 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (0
−ℝ 𝑦) ∈ ℂ) |
11 | 8, 10 | mulcld 11310 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (i
· (0 −ℝ 𝑦)) ∈ ℂ) |
12 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· (0 −ℝ 𝑦)) ∈ ℂ) |
13 | | rernegcl 42347 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (0
−ℝ 𝑥) ∈ ℝ) |
14 | 13 | recnd 11318 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (0
−ℝ 𝑥) ∈ ℂ) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0
−ℝ 𝑥) ∈ ℂ) |
16 | 12, 15 | addcld 11309 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) ∈
ℂ) |
17 | | recn 11274 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
18 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℂ) |
19 | | recn 11274 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
20 | 8, 19 | mulcld 11310 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → (i
· 𝑦) ∈
ℂ) |
21 | 20 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· 𝑦) ∈
ℂ) |
22 | 18, 21, 12 | addassd 11312 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0
−ℝ 𝑦))) = (𝑥 + ((i · 𝑦) + (i · (0 −ℝ
𝑦))))) |
23 | 8, 19, 10 | adddid 11314 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → (i
· (𝑦 + (0
−ℝ 𝑦))) = ((i · 𝑦) + (i · (0 −ℝ
𝑦)))) |
24 | | renegid 42349 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → (𝑦 + (0 −ℝ
𝑦)) = 0) |
25 | 24 | oveq2d 7464 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → (i
· (𝑦 + (0
−ℝ 𝑦))) = (i · 0)) |
26 | | sn-it0e0 42391 |
. . . . . . . . . . . . . 14
⊢ (i
· 0) = 0 |
27 | 25, 26 | eqtrdi 2796 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → (i
· (𝑦 + (0
−ℝ 𝑦))) = 0) |
28 | 23, 27 | eqtr3d 2782 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → ((i
· 𝑦) + (i ·
(0 −ℝ 𝑦))) = 0) |
29 | 28 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· 𝑦) + (i ·
(0 −ℝ 𝑦))) = 0) |
30 | 29 | oveq2d 7464 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + ((i · 𝑦) + (i · (0
−ℝ 𝑦)))) = (𝑥 + 0)) |
31 | | readdrid 42385 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝑥 + 0) = 𝑥) |
32 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 0) = 𝑥) |
33 | 22, 30, 32 | 3eqtrd 2784 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0
−ℝ 𝑦))) = 𝑥) |
34 | 33 | oveq1d 7463 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (i · (0
−ℝ 𝑦))) + (0 −ℝ 𝑥)) = (𝑥 + (0 −ℝ 𝑥))) |
35 | 18, 21 | addcld 11309 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈
ℂ) |
36 | 35, 12, 15 | addassd 11312 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (i · (0
−ℝ 𝑦))) + (0 −ℝ 𝑥)) = ((𝑥 + (i · 𝑦)) + ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)))) |
37 | | renegid 42349 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (𝑥 + (0 −ℝ
𝑥)) = 0) |
38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (0 −ℝ
𝑥)) = 0) |
39 | 34, 36, 38 | 3eqtr3d 2788 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) = 0) |
40 | 12, 15, 35 | addassd 11312 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = ((i · (0
−ℝ 𝑦)) + ((0 −ℝ 𝑥) + (𝑥 + (i · 𝑦))))) |
41 | | renegid2 42389 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((0
−ℝ 𝑥) + 𝑥) = 0) |
42 | 41 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0
−ℝ 𝑥) + 𝑥) = 0) |
43 | 42 | oveq1d 7463 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0
−ℝ 𝑥) + 𝑥) + (i · 𝑦)) = (0 + (i · 𝑦))) |
44 | 15, 18, 21 | addassd 11312 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0
−ℝ 𝑥) + 𝑥) + (i · 𝑦)) = ((0 −ℝ 𝑥) + (𝑥 + (i · 𝑦)))) |
45 | | sn-addlid 42380 |
. . . . . . . . . . 11
⊢ ((i
· 𝑦) ∈ ℂ
→ (0 + (i · 𝑦))
= (i · 𝑦)) |
46 | 21, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + (i
· 𝑦)) = (i ·
𝑦)) |
47 | 43, 44, 46 | 3eqtr3rd 2789 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· 𝑦) = ((0
−ℝ 𝑥) + (𝑥 + (i · 𝑦)))) |
48 | 47 | oveq2d 7464 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (i · 𝑦)) = ((i · (0
−ℝ 𝑦)) + ((0 −ℝ 𝑥) + (𝑥 + (i · 𝑦))))) |
49 | 8, 10, 19 | adddid 11314 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (i
· ((0 −ℝ 𝑦) + 𝑦)) = ((i · (0
−ℝ 𝑦)) + (i · 𝑦))) |
50 | | renegid2 42389 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → ((0
−ℝ 𝑦) + 𝑦) = 0) |
51 | 50 | oveq2d 7464 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → (i
· ((0 −ℝ 𝑦) + 𝑦)) = (i · 0)) |
52 | 51, 26 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (i
· ((0 −ℝ 𝑦) + 𝑦)) = 0) |
53 | 49, 52 | eqtr3d 2782 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → ((i
· (0 −ℝ 𝑦)) + (i · 𝑦)) = 0) |
54 | 53 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (i · 𝑦)) = 0) |
55 | 40, 48, 54 | 3eqtr2d 2786 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = 0) |
56 | 39, 55 | jca 511 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) = 0 ∧ (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = 0)) |
57 | 6, 16, 56 | rspcedvdw 3638 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
∃𝑏 ∈ ℂ
(((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0)) |
58 | 57 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
∃𝑏 ∈ ℂ
(((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0)) |
59 | | oveq1 7455 |
. . . . . . 7
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 + 𝑏) = ((𝑥 + (i · 𝑦)) + 𝑏)) |
60 | 59 | eqeq1d 2742 |
. . . . . 6
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 + 𝑏) = 0 ↔ ((𝑥 + (i · 𝑦)) + 𝑏) = 0)) |
61 | | oveq2 7456 |
. . . . . . 7
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝑏 + 𝐴) = (𝑏 + (𝑥 + (i · 𝑦)))) |
62 | 61 | eqeq1d 2742 |
. . . . . 6
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((𝑏 + 𝐴) = 0 ↔ (𝑏 + (𝑥 + (i · 𝑦))) = 0)) |
63 | 60, 62 | anbi12d 631 |
. . . . 5
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0) ↔ (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0))) |
64 | 63 | rexbidv 3185 |
. . . 4
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0) ↔ ∃𝑏 ∈ ℂ (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0))) |
65 | 58, 64 | syl5ibrcom 247 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
66 | 65 | rexlimdvva 3219 |
. 2
⊢ (𝐴 ∈ ℂ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝐴 = (𝑥 + (i · 𝑦)) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
67 | 1, 66 | mpd 15 |
1
⊢ (𝐴 ∈ ℂ →
∃𝑏 ∈ ℂ
((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) |