Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-negex12 Structured version   Visualization version   GIF version

Theorem sn-negex12 42405
Description: A combination of cnegex 11355 and cnegex2 11356, this proof takes cnre 11171 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.)
Assertion
Ref Expression
sn-negex12 (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
Distinct variable group:   𝐴,𝑏

Proof of Theorem sn-negex12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11171 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 oveq2 7395 . . . . . . . 8 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ((𝑥 + (i · 𝑦)) + 𝑏) = ((𝑥 + (i · 𝑦)) + ((i · (0 − 𝑦)) + (0 − 𝑥))))
32eqeq1d 2731 . . . . . . 7 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ↔ ((𝑥 + (i · 𝑦)) + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0))
4 oveq1 7394 . . . . . . . 8 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → (𝑏 + (𝑥 + (i · 𝑦))) = (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))))
54eqeq1d 2731 . . . . . . 7 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ((𝑏 + (𝑥 + (i · 𝑦))) = 0 ↔ (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = 0))
63, 5anbi12d 632 . . . . . 6 (𝑏 = ((i · (0 − 𝑦)) + (0 − 𝑥)) → ((((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0) ↔ (((𝑥 + (i · 𝑦)) + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0 ∧ (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = 0)))
7 ax-icn 11127 . . . . . . . . . 10 i ∈ ℂ
87a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → i ∈ ℂ)
9 rernegcl 42359 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
109recnd 11202 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℂ)
118, 10mulcld 11194 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 − 𝑦)) ∈ ℂ)
1211adantl 481 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (0 − 𝑦)) ∈ ℂ)
13 rernegcl 42359 . . . . . . . . 9 (𝑥 ∈ ℝ → (0 − 𝑥) ∈ ℝ)
1413recnd 11202 . . . . . . . 8 (𝑥 ∈ ℝ → (0 − 𝑥) ∈ ℂ)
1514adantr 480 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 − 𝑥) ∈ ℂ)
1612, 15addcld 11193 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (0 − 𝑥)) ∈ ℂ)
17 recn 11158 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1817adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
19 recn 11158 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
208, 19mulcld 11194 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
2120adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
2218, 21, 12addassd 11196 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) = (𝑥 + ((i · 𝑦) + (i · (0 − 𝑦)))))
238, 19, 10adddid 11198 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (i · (𝑦 + (0 − 𝑦))) = ((i · 𝑦) + (i · (0 − 𝑦))))
24 renegid 42361 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝑦 + (0 − 𝑦)) = 0)
2524oveq2d 7403 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (i · (𝑦 + (0 − 𝑦))) = (i · 0))
26 sn-it0e0 42404 . . . . . . . . . . . . . 14 (i · 0) = 0
2725, 26eqtrdi 2780 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (i · (𝑦 + (0 − 𝑦))) = 0)
2823, 27eqtr3d 2766 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ((i · 𝑦) + (i · (0 − 𝑦))) = 0)
2928adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · 𝑦) + (i · (0 − 𝑦))) = 0)
3029oveq2d 7403 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + ((i · 𝑦) + (i · (0 − 𝑦)))) = (𝑥 + 0))
31 readdrid 42398 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 0) = 𝑥)
3231adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 0) = 𝑥)
3322, 30, 323eqtrd 2768 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) = 𝑥)
3433oveq1d 7402 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) + (0 − 𝑥)) = (𝑥 + (0 − 𝑥)))
3518, 21addcld 11193 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
3635, 12, 15addassd 11196 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (i · (0 − 𝑦))) + (0 − 𝑥)) = ((𝑥 + (i · 𝑦)) + ((i · (0 − 𝑦)) + (0 − 𝑥))))
37 renegid 42361 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + (0 − 𝑥)) = 0)
3837adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (0 − 𝑥)) = 0)
3934, 36, 383eqtr3d 2772 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0)
4012, 15, 35addassd 11196 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = ((i · (0 − 𝑦)) + ((0 − 𝑥) + (𝑥 + (i · 𝑦)))))
41 renegid2 42402 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((0 − 𝑥) + 𝑥) = 0)
4241adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 − 𝑥) + 𝑥) = 0)
4342oveq1d 7402 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0 − 𝑥) + 𝑥) + (i · 𝑦)) = (0 + (i · 𝑦)))
4415, 18, 21addassd 11196 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0 − 𝑥) + 𝑥) + (i · 𝑦)) = ((0 − 𝑥) + (𝑥 + (i · 𝑦))))
45 sn-addlid 42392 . . . . . . . . . . 11 ((i · 𝑦) ∈ ℂ → (0 + (i · 𝑦)) = (i · 𝑦))
4621, 45syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + (i · 𝑦)) = (i · 𝑦))
4743, 44, 463eqtr3rd 2773 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) = ((0 − 𝑥) + (𝑥 + (i · 𝑦))))
4847oveq2d 7403 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (i · 𝑦)) = ((i · (0 − 𝑦)) + ((0 − 𝑥) + (𝑥 + (i · 𝑦)))))
498, 10, 19adddid 11198 . . . . . . . . . 10 (𝑦 ∈ ℝ → (i · ((0 − 𝑦) + 𝑦)) = ((i · (0 − 𝑦)) + (i · 𝑦)))
50 renegid2 42402 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ((0 − 𝑦) + 𝑦) = 0)
5150oveq2d 7403 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (i · ((0 − 𝑦) + 𝑦)) = (i · 0))
5251, 26eqtrdi 2780 . . . . . . . . . 10 (𝑦 ∈ ℝ → (i · ((0 − 𝑦) + 𝑦)) = 0)
5349, 52eqtr3d 2766 . . . . . . . . 9 (𝑦 ∈ ℝ → ((i · (0 − 𝑦)) + (i · 𝑦)) = 0)
5453adantl 481 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · (0 − 𝑦)) + (i · 𝑦)) = 0)
5540, 48, 543eqtr2d 2770 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = 0)
5639, 55jca 511 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + ((i · (0 − 𝑦)) + (0 − 𝑥))) = 0 ∧ (((i · (0 − 𝑦)) + (0 − 𝑥)) + (𝑥 + (i · 𝑦))) = 0))
576, 16, 56rspcedvdw 3591 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑏 ∈ ℂ (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0))
5857adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∃𝑏 ∈ ℂ (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0))
59 oveq1 7394 . . . . . . 7 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 + 𝑏) = ((𝑥 + (i · 𝑦)) + 𝑏))
6059eqeq1d 2731 . . . . . 6 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 + 𝑏) = 0 ↔ ((𝑥 + (i · 𝑦)) + 𝑏) = 0))
61 oveq2 7395 . . . . . . 7 (𝐴 = (𝑥 + (i · 𝑦)) → (𝑏 + 𝐴) = (𝑏 + (𝑥 + (i · 𝑦))))
6261eqeq1d 2731 . . . . . 6 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝑏 + 𝐴) = 0 ↔ (𝑏 + (𝑥 + (i · 𝑦))) = 0))
6360, 62anbi12d 632 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0) ↔ (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0)))
6463rexbidv 3157 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → (∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0) ↔ ∃𝑏 ∈ ℂ (((𝑥 + (i · 𝑦)) + 𝑏) = 0 ∧ (𝑏 + (𝑥 + (i · 𝑦))) = 0)))
6558, 64syl5ibrcom 247 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
6665rexlimdvva 3194 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)))
671, 66mpd 15 1 (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  ici 11070   + caddc 11071   · cmul 11073   cresub 42353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-2 12249  df-3 12250  df-resub 42354
This theorem is referenced by:  sn-negex  42406  sn-negex2  42407  addinvcom  42420
  Copyright terms: Public domain W3C validator