Step | Hyp | Ref
| Expression |
1 | | ax-icn 10930 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
2 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → i ∈
ℂ) |
3 | | rernegcl 40354 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (0
−ℝ 𝑦) ∈ ℝ) |
4 | 3 | recnd 11003 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (0
−ℝ 𝑦) ∈ ℂ) |
5 | 2, 4 | mulcld 10995 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (i
· (0 −ℝ 𝑦)) ∈ ℂ) |
6 | 5 | adantl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· (0 −ℝ 𝑦)) ∈ ℂ) |
7 | | rernegcl 40354 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (0
−ℝ 𝑥) ∈ ℝ) |
8 | 7 | recnd 11003 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (0
−ℝ 𝑥) ∈ ℂ) |
9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0
−ℝ 𝑥) ∈ ℂ) |
10 | 6, 9 | addcld 10994 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) ∈
ℂ) |
11 | 10 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) ∈
ℂ) |
12 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → (𝑏 = ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥)) ↔ ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)))) |
13 | 12 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) → (𝑏 = ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥)) ↔ ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)))) |
14 | | eqidd 2739 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) |
15 | 11, 13, 14 | rspcedvd 3563 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
∃𝑏 ∈ ℂ
𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) |
16 | 15 | ralrimivva 3123 |
. . 3
⊢ (𝐴 ∈ ℂ →
∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
∃𝑏 ∈ ℂ
𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥))) |
17 | | cnre 10972 |
. . 3
⊢ (𝐴 ∈ ℂ →
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝐴 = (𝑥 + (i · 𝑦))) |
18 | 16, 17 | r19.29d2r 3264 |
. 2
⊢ (𝐴 ∈ ℂ →
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
(∃𝑏 ∈ ℂ
𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) ∧ 𝐴 = (𝑥 + (i · 𝑦)))) |
19 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 + (i · (0 −ℝ
𝑦))) = ((𝑥 + (i · 𝑦)) + (i · (0 −ℝ
𝑦)))) |
20 | 19 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + (i · (0 −ℝ
𝑦))) = ((𝑥 + (i · 𝑦)) + (i · (0 −ℝ
𝑦)))) |
21 | | recn 10961 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℂ) |
23 | 1 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈
ℂ) |
24 | | recn 10961 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
25 | 24 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℂ) |
26 | 23, 25 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· 𝑦) ∈
ℂ) |
27 | 22, 26, 6 | addassd 10997 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0
−ℝ 𝑦))) = (𝑥 + ((i · 𝑦) + (i · (0 −ℝ
𝑦))))) |
28 | | renegid 40356 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → (𝑦 + (0 −ℝ
𝑦)) = 0) |
29 | 28 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (i
· (𝑦 + (0
−ℝ 𝑦))) = (i · 0)) |
30 | 2, 24, 4 | adddid 10999 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (i
· (𝑦 + (0
−ℝ 𝑦))) = ((i · 𝑦) + (i · (0 −ℝ
𝑦)))) |
31 | | sn-it0e0 40397 |
. . . . . . . . . . . . . . . . 17
⊢ (i
· 0) = 0 |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (i
· 0) = 0) |
33 | 29, 30, 32 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → ((i
· 𝑦) + (i ·
(0 −ℝ 𝑦))) = 0) |
34 | 33 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → (𝑥 + ((i · 𝑦) + (i · (0
−ℝ 𝑦)))) = (𝑥 + 0)) |
35 | 34 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + ((i · 𝑦) + (i · (0
−ℝ 𝑦)))) = (𝑥 + 0)) |
36 | | readdid1 40392 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → (𝑥 + 0) = 𝑥) |
37 | 36 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 0) = 𝑥) |
38 | 27, 35, 37 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) + (i · (0
−ℝ 𝑦))) = 𝑥) |
39 | 38 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) + (i · (0 −ℝ
𝑦))) = 𝑥) |
40 | 20, 39 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + (i · (0 −ℝ
𝑦))) = 𝑥) |
41 | 40 | oveq1d 7290 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + (i · (0 −ℝ
𝑦))) + (0
−ℝ 𝑥)) = (𝑥 + (0 −ℝ 𝑥))) |
42 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 ∈ ℂ) |
43 | 6 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · (0
−ℝ 𝑦)) ∈ ℂ) |
44 | 9 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 −ℝ 𝑥) ∈
ℂ) |
45 | 42, 43, 44 | addassd 10997 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + (i · (0 −ℝ
𝑦))) + (0
−ℝ 𝑥)) = (𝐴 + ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥)))) |
46 | | renegid 40356 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝑥 + (0 −ℝ
𝑥)) = 0) |
47 | 46 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (0 −ℝ
𝑥)) = 0) |
48 | 47 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 + (0 −ℝ 𝑥)) = 0) |
49 | 41, 45, 48 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥))) = 0) |
50 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + 𝐴) = (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦)))) |
51 | 22, 26 | addcld 10994 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈
ℂ) |
52 | 6, 9, 51 | addassd 10997 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = ((i · (0
−ℝ 𝑦)) + ((0 −ℝ 𝑥) + (𝑥 + (i · 𝑦))))) |
53 | 9, 22, 26 | addassd 10997 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0
−ℝ 𝑥) + 𝑥) + (i · 𝑦)) = ((0 −ℝ 𝑥) + (𝑥 + (i · 𝑦)))) |
54 | 53 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (((0 −ℝ 𝑥) + 𝑥) + (i · 𝑦))) = ((i · (0
−ℝ 𝑦)) + ((0 −ℝ 𝑥) + (𝑥 + (i · 𝑦))))) |
55 | | renegid2 40396 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → ((0
−ℝ 𝑥) + 𝑥) = 0) |
56 | 55 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0
−ℝ 𝑥) + 𝑥) = 0) |
57 | 56 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0
−ℝ 𝑥) + 𝑥) + (i · 𝑦)) = (0 + (i · 𝑦))) |
58 | | sn-addid2 40387 |
. . . . . . . . . . . . . . 15
⊢ ((i
· 𝑦) ∈ ℂ
→ (0 + (i · 𝑦))
= (i · 𝑦)) |
59 | 26, 58 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + (i
· 𝑦)) = (i ·
𝑦)) |
60 | 57, 59 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((0
−ℝ 𝑥) + 𝑥) + (i · 𝑦)) = (i · 𝑦)) |
61 | 60 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (((0 −ℝ 𝑥) + 𝑥) + (i · 𝑦))) = ((i · (0
−ℝ 𝑦)) + (i · 𝑦))) |
62 | 4 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0
−ℝ 𝑦) ∈ ℂ) |
63 | 23, 62, 25 | adddid 10999 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· ((0 −ℝ 𝑦) + 𝑦)) = ((i · (0
−ℝ 𝑦)) + (i · 𝑦))) |
64 | | renegid2 40396 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → ((0
−ℝ 𝑦) + 𝑦) = 0) |
65 | 64 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0
−ℝ 𝑦) + 𝑦) = 0) |
66 | 65 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· ((0 −ℝ 𝑦) + 𝑦)) = (i · 0)) |
67 | 66, 31 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· ((0 −ℝ 𝑦) + 𝑦)) = 0) |
68 | 61, 63, 67 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i
· (0 −ℝ 𝑦)) + (((0 −ℝ 𝑥) + 𝑥) + (i · 𝑦))) = 0) |
69 | 52, 54, 68 | 3eqtr2d 2784 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = 0) |
70 | 69 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((i
· (0 −ℝ 𝑦)) + (0 −ℝ 𝑥)) + (𝑥 + (i · 𝑦))) = 0) |
71 | 50, 70 | sylan9eqr 2800 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + 𝐴) = 0) |
72 | 49, 71 | jca 512 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥))) = 0 ∧ (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + 𝐴) = 0)) |
73 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → (𝐴 + 𝑏) = (𝐴 + ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥)))) |
74 | 73 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → ((𝐴 + 𝑏) = 0 ↔ (𝐴 + ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥))) = 0)) |
75 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → (𝑏 + 𝐴) = (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + 𝐴)) |
76 | 75 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → ((𝑏 + 𝐴) = 0 ↔ (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + 𝐴) = 0)) |
77 | 74, 76 | anbi12d 631 |
. . . . . . 7
⊢ (𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) → (((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0) ↔ ((𝐴 + ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥))) = 0 ∧ (((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) + 𝐴) = 0))) |
78 | 72, 77 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑏 = ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥)) → ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
79 | 78 | reximdv 3202 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (∃𝑏 ∈ ℂ 𝑏 = ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥)) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
80 | 79 | expimpd 454 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 = (𝑥 + (i · 𝑦)) ∧ ∃𝑏 ∈ ℂ 𝑏 = ((i · (0 −ℝ
𝑦)) + (0
−ℝ 𝑥))) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
81 | 80 | ancomsd 466 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∃𝑏 ∈ ℂ
𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
82 | 81 | rexlimdvva 3223 |
. 2
⊢ (𝐴 ∈ ℂ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
(∃𝑏 ∈ ℂ
𝑏 = ((i · (0
−ℝ 𝑦)) + (0 −ℝ 𝑥)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))) |
83 | 18, 82 | mpd 15 |
1
⊢ (𝐴 ∈ ℂ →
∃𝑏 ∈ ℂ
((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) |