| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.37 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of one direction of 19.37 2233. (The other direction does not hold when 𝐴 is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| r19.37.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| r19.37 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 3096 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.37.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | 2, 3 | ralrimi 3244 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | imim1i 63 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: ss2iundf 43650 |
| Copyright terms: Public domain | W3C validator |