Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.37 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of one direction of 19.37 2225. (The other direction does not hold when 𝐴 is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
r19.37.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.37 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.35 3271 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.37.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
4 | 2, 3 | ralrimi 3141 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
5 | 4 | imim1i 63 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: ss2iundf 41267 |
Copyright terms: Public domain | W3C validator |