MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.41 Structured version   Visualization version   GIF version

Theorem r19.41 3274
Description: Restricted quantifier version of 19.41 2231. See r19.41v 3273 for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010.)
Hypothesis
Ref Expression
r19.41.1 𝑥𝜓
Assertion
Ref Expression
r19.41 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))

Proof of Theorem r19.41
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝜑) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
21exbii 1851 . . 3 (∃𝑥((𝑥𝐴𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
3 r19.41.1 . . . 4 𝑥𝜓
4319.41 2231 . . 3 (∃𝑥((𝑥𝐴𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ 𝜓))
52, 4bitr3i 276 . 2 (∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ 𝜓))
6 df-rex 3069 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
7 df-rex 3069 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
87anbi1i 623 . 2 ((∃𝑥𝐴 𝜑𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ 𝜓))
95, 6, 83bitr4i 302 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wnf 1787  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-rex 3069
This theorem is referenced by:  reuxfrdf  30740  iunin1f  30798  2reu8i  44492
  Copyright terms: Public domain W3C validator