| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3227 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexim 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: 2reurex 3722 fompt 7056 tz7.49 8374 hsmexlem2 10340 acunirnmpt2 32617 acunirnmpt2f 32618 locfinreflem 33806 cmpcref 33816 fvineqsneq 37385 indexdom 37713 filbcmb 37719 cdlemefr29exN 40381 rexanuz3 45074 reximdd 45126 disjrnmpt2 45166 disjinfi 45170 iunmapsn 45195 infnsuprnmpt 45228 rnmptbdlem 45233 supxrge 45318 suplesup 45319 infxr 45347 allbutfi 45373 supxrunb3 45379 infxrunb3rnmpt 45408 infrpgernmpt 45445 limsupre 45623 limsupub 45686 limsupre3lem 45714 limsupgtlem 45759 xlimmnfvlem1 45814 xlimpnfvlem1 45818 stoweidlem31 46013 stoweidlem34 46016 fourierdlem73 46161 sge0pnffigt 46378 sge0ltfirp 46382 sge0reuzb 46430 iundjiun 46442 ovnlerp 46544 smflimlem4 46756 smflimsuplem7 46808 |
| Copyright terms: Public domain | W3C validator |