Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexim 3172 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: 2reurex 3695 tz7.49 8276 hsmexlem2 10183 acunirnmpt2 30997 acunirnmpt2f 30998 locfinreflem 31790 cmpcref 31800 fvineqsneq 35583 indexdom 35892 filbcmb 35898 cdlemefr29exN 38416 rexanuz3 42646 reximdd 42701 disjrnmpt2 42726 fompt 42730 disjinfi 42731 iunmapsn 42757 infnsuprnmpt 42796 rnmptbdlem 42801 supxrge 42877 suplesup 42878 infxr 42906 allbutfi 42933 supxrunb3 42939 infxrunb3rnmpt 42968 infrpgernmpt 43005 limsupre 43182 limsupub 43245 limsupre3lem 43273 limsupgtlem 43318 xlimmnfvlem1 43373 xlimpnfvlem1 43377 stoweidlem31 43572 stoweidlem34 43575 fourierdlem73 43720 sge0pnffigt 43934 sge0ltfirp 43938 sge0reuzb 43986 iundjiun 43998 ovnlerp 44100 smflimlem4 44309 smflimsuplem7 44359 |
Copyright terms: Public domain | W3C validator |