| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3235 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexim 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: 2reurex 3731 fompt 7090 tz7.49 8413 hsmexlem2 10380 acunirnmpt2 32584 acunirnmpt2f 32585 locfinreflem 33830 cmpcref 33840 fvineqsneq 37400 indexdom 37728 filbcmb 37734 cdlemefr29exN 40396 rexanuz3 45090 reximdd 45142 disjrnmpt2 45182 disjinfi 45186 iunmapsn 45211 infnsuprnmpt 45244 rnmptbdlem 45249 supxrge 45334 suplesup 45335 infxr 45363 allbutfi 45389 supxrunb3 45395 infxrunb3rnmpt 45424 infrpgernmpt 45461 limsupre 45639 limsupub 45702 limsupre3lem 45730 limsupgtlem 45775 xlimmnfvlem1 45830 xlimpnfvlem1 45834 stoweidlem31 46029 stoweidlem34 46032 fourierdlem73 46177 sge0pnffigt 46394 sge0ltfirp 46398 sge0reuzb 46446 iundjiun 46458 ovnlerp 46560 smflimlem4 46772 smflimsuplem7 46824 |
| Copyright terms: Public domain | W3C validator |