| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3230 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexim 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: 2reurex 3719 fompt 7051 tz7.49 8364 hsmexlem2 10318 acunirnmpt2 32640 acunirnmpt2f 32641 locfinreflem 33851 cmpcref 33861 fvineqsneq 37452 indexdom 37780 filbcmb 37786 cdlemefr29exN 40447 rexanuz3 45139 reximdd 45191 disjrnmpt2 45231 disjinfi 45235 iunmapsn 45260 infnsuprnmpt 45293 rnmptbdlem 45298 supxrge 45383 suplesup 45384 infxr 45411 allbutfi 45437 supxrunb3 45443 infxrunb3rnmpt 45472 infrpgernmpt 45509 limsupre 45685 limsupub 45748 limsupre3lem 45776 limsupgtlem 45821 xlimmnfvlem1 45876 xlimpnfvlem1 45880 stoweidlem31 46075 stoweidlem34 46078 fourierdlem73 46223 sge0pnffigt 46440 sge0ltfirp 46444 sge0reuzb 46492 iundjiun 46504 ovnlerp 46606 smflimlem4 46818 smflimsuplem7 46870 |
| Copyright terms: Public domain | W3C validator |