| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexim 3074 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: 2reurex 3715 fompt 7059 tz7.49 8372 hsmexlem2 10327 acunirnmpt2 32646 acunirnmpt2f 32647 locfinreflem 33876 cmpcref 33886 fvineqsneq 37479 indexdom 37797 filbcmb 37803 cdlemefr29exN 40524 rexanuz3 45220 reximdd 45272 disjrnmpt2 45312 disjinfi 45316 iunmapsn 45341 infnsuprnmpt 45374 rnmptbdlem 45379 supxrge 45464 suplesup 45465 infxr 45492 allbutfi 45518 supxrunb3 45524 infxrunb3rnmpt 45553 infrpgernmpt 45590 limsupre 45766 limsupub 45829 limsupre3lem 45857 limsupgtlem 45902 xlimmnfvlem1 45957 xlimpnfvlem1 45961 stoweidlem31 46156 stoweidlem34 46159 fourierdlem73 46304 sge0pnffigt 46521 sge0ltfirp 46525 sge0reuzb 46573 iundjiun 46585 ovnlerp 46687 smflimlem4 46899 smflimsuplem7 46951 |
| Copyright terms: Public domain | W3C validator |