![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 3255 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexim 3085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1780 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-ral 3060 df-rex 3069 |
This theorem is referenced by: 2reurex 3769 fompt 7138 tz7.49 8484 hsmexlem2 10465 acunirnmpt2 32677 acunirnmpt2f 32678 locfinreflem 33801 cmpcref 33811 fvineqsneq 37395 indexdom 37721 filbcmb 37727 cdlemefr29exN 40385 rexanuz3 45036 reximdd 45091 disjrnmpt2 45131 disjinfi 45135 iunmapsn 45160 infnsuprnmpt 45195 rnmptbdlem 45200 supxrge 45288 suplesup 45289 infxr 45317 allbutfi 45343 supxrunb3 45349 infxrunb3rnmpt 45378 infrpgernmpt 45415 limsupre 45597 limsupub 45660 limsupre3lem 45688 limsupgtlem 45733 xlimmnfvlem1 45788 xlimpnfvlem1 45792 stoweidlem31 45987 stoweidlem34 45990 fourierdlem73 46135 sge0pnffigt 46352 sge0ltfirp 46356 sge0reuzb 46404 iundjiun 46416 ovnlerp 46518 smflimlem4 46730 smflimsuplem7 46782 |
Copyright terms: Public domain | W3C validator |