MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdai Structured version   Visualization version   GIF version

Theorem reximdai 3244
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
Hypotheses
Ref Expression
reximdai.1 𝑥𝜑
reximdai.2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
reximdai (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))

Proof of Theorem reximdai
StepHypRef Expression
1 reximdai.1 . . 3 𝑥𝜑
2 reximdai.2 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
31, 2ralrimi 3141 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
4 rexim 3172 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
53, 4syl 17 1 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1786  wcel 2106  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-ral 3069  df-rex 3070
This theorem is referenced by:  2reurex  3695  tz7.49  8276  hsmexlem2  10183  acunirnmpt2  30997  acunirnmpt2f  30998  locfinreflem  31790  cmpcref  31800  fvineqsneq  35583  indexdom  35892  filbcmb  35898  cdlemefr29exN  38416  rexanuz3  42646  reximdd  42701  disjrnmpt2  42726  fompt  42730  disjinfi  42731  iunmapsn  42757  infnsuprnmpt  42796  rnmptbdlem  42801  supxrge  42877  suplesup  42878  infxr  42906  allbutfi  42933  supxrunb3  42939  infxrunb3rnmpt  42968  infrpgernmpt  43005  limsupre  43182  limsupub  43245  limsupre3lem  43273  limsupgtlem  43318  xlimmnfvlem1  43373  xlimpnfvlem1  43377  stoweidlem31  43572  stoweidlem34  43575  fourierdlem73  43720  sge0pnffigt  43934  sge0ltfirp  43938  sge0reuzb  43986  iundjiun  43998  ovnlerp  44100  smflimlem4  44309  smflimsuplem7  44359
  Copyright terms: Public domain W3C validator