| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3244 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexim 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: 2reurex 3748 fompt 7113 tz7.49 8464 hsmexlem2 10446 acunirnmpt2 32643 acunirnmpt2f 32644 locfinreflem 33876 cmpcref 33886 fvineqsneq 37435 indexdom 37763 filbcmb 37769 cdlemefr29exN 40426 rexanuz3 45100 reximdd 45152 disjrnmpt2 45192 disjinfi 45196 iunmapsn 45221 infnsuprnmpt 45254 rnmptbdlem 45259 supxrge 45345 suplesup 45346 infxr 45374 allbutfi 45400 supxrunb3 45406 infxrunb3rnmpt 45435 infrpgernmpt 45472 limsupre 45650 limsupub 45713 limsupre3lem 45741 limsupgtlem 45786 xlimmnfvlem1 45841 xlimpnfvlem1 45845 stoweidlem31 46040 stoweidlem34 46043 fourierdlem73 46188 sge0pnffigt 46405 sge0ltfirp 46409 sge0reuzb 46457 iundjiun 46469 ovnlerp 46571 smflimlem4 46783 smflimsuplem7 46835 |
| Copyright terms: Public domain | W3C validator |