MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdai Structured version   Visualization version   GIF version

Theorem reximdai 3248
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
Hypotheses
Ref Expression
reximdai.1 𝑥𝜑
reximdai.2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
reximdai (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))

Proof of Theorem reximdai
StepHypRef Expression
1 reximdai.1 . . 3 𝑥𝜑
2 reximdai.2 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
31, 2ralrimi 3244 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
4 rexim 3078 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
53, 4syl 17 1 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1783  wcel 2109  wral 3052  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3053  df-rex 3062
This theorem is referenced by:  2reurex  3748  fompt  7113  tz7.49  8464  hsmexlem2  10446  acunirnmpt2  32643  acunirnmpt2f  32644  locfinreflem  33876  cmpcref  33886  fvineqsneq  37435  indexdom  37763  filbcmb  37769  cdlemefr29exN  40426  rexanuz3  45100  reximdd  45152  disjrnmpt2  45192  disjinfi  45196  iunmapsn  45221  infnsuprnmpt  45254  rnmptbdlem  45259  supxrge  45345  suplesup  45346  infxr  45374  allbutfi  45400  supxrunb3  45406  infxrunb3rnmpt  45435  infrpgernmpt  45472  limsupre  45650  limsupub  45713  limsupre3lem  45741  limsupgtlem  45786  xlimmnfvlem1  45841  xlimpnfvlem1  45845  stoweidlem31  46040  stoweidlem34  46043  fourierdlem73  46188  sge0pnffigt  46405  sge0ltfirp  46409  sge0reuzb  46457  iundjiun  46469  ovnlerp  46571  smflimlem4  46783  smflimsuplem7  46835
  Copyright terms: Public domain W3C validator