Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 3140 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexim 3170 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: 2reurex 3695 tz7.49 8264 hsmexlem2 10171 acunirnmpt2 30983 acunirnmpt2f 30984 locfinreflem 31776 cmpcref 31786 fvineqsneq 35569 indexdom 35878 filbcmb 35884 cdlemefr29exN 38402 rexanuz3 42605 reximdd 42660 disjrnmpt2 42685 fompt 42689 disjinfi 42690 iunmapsn 42716 infnsuprnmpt 42755 rnmptbdlem 42760 supxrge 42836 suplesup 42837 infxr 42865 allbutfi 42892 supxrunb3 42898 infxrunb3rnmpt 42927 infrpgernmpt 42964 limsupre 43141 limsupub 43204 limsupre3lem 43232 limsupgtlem 43277 xlimmnfvlem1 43332 xlimpnfvlem1 43336 stoweidlem31 43531 stoweidlem34 43534 fourierdlem73 43679 sge0pnffigt 43893 sge0ltfirp 43897 sge0reuzb 43945 iundjiun 43957 ovnlerp 44059 smflimlem4 44265 smflimsuplem7 44315 |
Copyright terms: Public domain | W3C validator |