| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexim 3086 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: 2reurex 3765 fompt 7137 tz7.49 8486 hsmexlem2 10468 acunirnmpt2 32671 acunirnmpt2f 32672 locfinreflem 33840 cmpcref 33850 fvineqsneq 37414 indexdom 37742 filbcmb 37748 cdlemefr29exN 40405 rexanuz3 45106 reximdd 45158 disjrnmpt2 45198 disjinfi 45202 iunmapsn 45227 infnsuprnmpt 45262 rnmptbdlem 45267 supxrge 45354 suplesup 45355 infxr 45383 allbutfi 45409 supxrunb3 45415 infxrunb3rnmpt 45444 infrpgernmpt 45481 limsupre 45661 limsupub 45724 limsupre3lem 45752 limsupgtlem 45797 xlimmnfvlem1 45852 xlimpnfvlem1 45856 stoweidlem31 46051 stoweidlem34 46054 fourierdlem73 46199 sge0pnffigt 46416 sge0ltfirp 46420 sge0reuzb 46468 iundjiun 46480 ovnlerp 46582 smflimlem4 46794 smflimsuplem7 46846 |
| Copyright terms: Public domain | W3C validator |