Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 3139 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexim 3168 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-ral 3068 df-rex 3069 |
This theorem is referenced by: 2reurex 3690 tz7.49 8246 hsmexlem2 10114 acunirnmpt2 30899 acunirnmpt2f 30900 locfinreflem 31692 cmpcref 31702 fvineqsneq 35510 indexdom 35819 filbcmb 35825 cdlemefr29exN 38343 rexanuz3 42535 reximdd 42590 disjrnmpt2 42615 fompt 42619 disjinfi 42620 iunmapsn 42646 infnsuprnmpt 42685 rnmptbdlem 42690 supxrge 42767 suplesup 42768 infxr 42796 allbutfi 42823 supxrunb3 42829 infxrunb3rnmpt 42858 infrpgernmpt 42895 limsupre 43072 limsupub 43135 limsupre3lem 43163 limsupgtlem 43208 xlimmnfvlem1 43263 xlimpnfvlem1 43267 stoweidlem31 43462 stoweidlem34 43465 fourierdlem73 43610 sge0pnffigt 43824 sge0ltfirp 43828 sge0reuzb 43876 iundjiun 43888 ovnlerp 43990 smflimlem4 44196 smflimsuplem7 44246 |
Copyright terms: Public domain | W3C validator |