![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdai | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
reximdai.1 | ⊢ Ⅎ𝑥𝜑 |
reximdai.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdai.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | reximdai.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 3263 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexim 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-ral 3068 df-rex 3077 |
This theorem is referenced by: 2reurex 3782 fompt 7152 tz7.49 8501 hsmexlem2 10496 acunirnmpt2 32678 acunirnmpt2f 32679 locfinreflem 33786 cmpcref 33796 fvineqsneq 37378 indexdom 37694 filbcmb 37700 cdlemefr29exN 40359 rexanuz3 44998 reximdd 45053 disjrnmpt2 45095 disjinfi 45099 iunmapsn 45124 infnsuprnmpt 45159 rnmptbdlem 45164 supxrge 45253 suplesup 45254 infxr 45282 allbutfi 45308 supxrunb3 45314 infxrunb3rnmpt 45343 infrpgernmpt 45380 limsupre 45562 limsupub 45625 limsupre3lem 45653 limsupgtlem 45698 xlimmnfvlem1 45753 xlimpnfvlem1 45757 stoweidlem31 45952 stoweidlem34 45955 fourierdlem73 46100 sge0pnffigt 46317 sge0ltfirp 46321 sge0reuzb 46369 iundjiun 46381 ovnlerp 46483 smflimlem4 46695 smflimsuplem7 46747 |
Copyright terms: Public domain | W3C validator |