Step | Hyp | Ref
| Expression |
1 | | ss2iundf.xph |
. . 3
⊢
Ⅎ𝑥𝜑 |
2 | | ss2iundf.ss |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) |
3 | | df-ral 3068 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐶 ¬ 𝐵 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷)) |
4 | | ss2iundf.el |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) |
5 | | ss2iundf.yph |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝜑 |
6 | | ss2iundf.a |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝐴 |
7 | 6 | nfcri 2893 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
8 | 5, 7 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ 𝐴) |
9 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) |
10 | 9 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → (𝑦 ∈ 𝐶 ↔ 𝑌 ∈ 𝐶)) |
11 | 10 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → (𝑌 ∈ 𝐶 → 𝑦 ∈ 𝐶)) |
12 | | ss2iundf.sub |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
13 | 12 | sseq2d 3949 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → (𝐵 ⊆ 𝐷 ↔ 𝐵 ⊆ 𝐺)) |
14 | 13 | 3expa 1116 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → (𝐵 ⊆ 𝐷 ↔ 𝐵 ⊆ 𝐺)) |
15 | 14 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → (¬ 𝐵 ⊆ 𝐷 ↔ ¬ 𝐵 ⊆ 𝐺)) |
16 | 15 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → (¬ 𝐵 ⊆ 𝐷 → ¬ 𝐵 ⊆ 𝐺)) |
17 | 11, 16 | imim12d 81 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = 𝑌) → ((𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → (𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺))) |
18 | 17 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝑌 → ((𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → (𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺)))) |
19 | 8, 18 | alrimi 2209 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 = 𝑌 → ((𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → (𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺)))) |
20 | | ss2iundf.y |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝑌 |
21 | | ss2iundf.yc |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝐶 |
22 | 20, 21 | nfel 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑌 ∈ 𝐶 |
23 | | ss2iundf.b |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝐵 |
24 | | ss2iundf.g |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝐺 |
25 | 23, 24 | nfss 3909 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝐵 ⊆ 𝐺 |
26 | 25 | nfn 1861 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 ¬ 𝐵 ⊆ 𝐺 |
27 | 22, 26 | nfim 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺) |
28 | 27, 20 | spcimgft 3516 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 = 𝑌 → ((𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → (𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺))) → (𝑌 ∈ 𝐶 → (∀𝑦(𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → (𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺)))) |
29 | 19, 4, 28 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦(𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → (𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺))) |
30 | 4, 29 | mpid 44 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦(𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷) → ¬ 𝐵 ⊆ 𝐺)) |
31 | 3, 30 | syl5bi 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 → ¬ 𝐵 ⊆ 𝐺)) |
32 | 31 | con2d 134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝐺 → ¬ ∀𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷)) |
33 | | dfrex2 3166 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐶 𝐵 ⊆ 𝐷 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷) |
34 | 32, 33 | syl6ibr 251 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝐺 → ∃𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷)) |
35 | 2, 34 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷) |
36 | 35 | ex 412 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷)) |
37 | 1, 36 | ralrimi 3139 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷) |
38 | | ssel 3910 |
. . . . . . . 8
⊢ (𝐵 ⊆ 𝐷 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷)) |
39 | 38 | reximi 3174 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐶 𝐵 ⊆ 𝐷 → ∃𝑦 ∈ 𝐶 (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷)) |
40 | 23 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑧 ∈ 𝐵 |
41 | 40 | r19.37 3270 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐶 (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷) → (𝑧 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
42 | 39, 41 | syl 17 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐶 𝐵 ⊆ 𝐷 → (𝑧 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
43 | | eliun 4925 |
. . . . . 6
⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷) |
44 | 42, 43 | syl6ibr 251 |
. . . . 5
⊢
(∃𝑦 ∈
𝐶 𝐵 ⊆ 𝐷 → (𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
45 | 44 | ssrdv 3923 |
. . . 4
⊢
(∃𝑦 ∈
𝐶 𝐵 ⊆ 𝐷 → 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷) |
46 | 45 | ralimi 3086 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷) |
47 | | df-iun 4923 |
. . . . 5
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
48 | 47 | sseq1i 3945 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
49 | | abss 3990 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
50 | | dfss2 3903 |
. . . . . 6
⊢ (𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧(𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
51 | 50 | ralbii 3090 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
52 | | ralcom4 3161 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑧(𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷) ↔ ∀𝑧∀𝑥 ∈ 𝐴 (𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
53 | | ss2iundf.xc |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐶 |
54 | | ss2iundf.d |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐷 |
55 | 53, 54 | nfiun 4951 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑦 ∈ 𝐶 𝐷 |
56 | 55 | nfcri 2893 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 |
57 | 56 | r19.23 3242 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷) ↔ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
58 | 57 | albii 1823 |
. . . . 5
⊢
(∀𝑧∀𝑥 ∈ 𝐴 (𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷)) |
59 | 51, 52, 58 | 3bitrri 297 |
. . . 4
⊢
(∀𝑧(∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪
𝑦 ∈ 𝐶 𝐷) ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷) |
60 | 48, 49, 59 | 3bitri 296 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷) |
61 | 46, 60 | sylibr 233 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∪
𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷) |
62 | 37, 61 | syl 17 |
1
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪
𝑦 ∈ 𝐶 𝐷) |