Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2iundf Structured version   Visualization version   GIF version

Theorem ss2iundf 40944
Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
ss2iundf.xph 𝑥𝜑
ss2iundf.yph 𝑦𝜑
ss2iundf.y 𝑦𝑌
ss2iundf.a 𝑦𝐴
ss2iundf.b 𝑦𝐵
ss2iundf.xc 𝑥𝐶
ss2iundf.yc 𝑦𝐶
ss2iundf.d 𝑥𝐷
ss2iundf.g 𝑦𝐺
ss2iundf.el ((𝜑𝑥𝐴) → 𝑌𝐶)
ss2iundf.sub ((𝜑𝑥𝐴𝑦 = 𝑌) → 𝐷 = 𝐺)
ss2iundf.ss ((𝜑𝑥𝐴) → 𝐵𝐺)
Assertion
Ref Expression
ss2iundf (𝜑 𝑥𝐴 𝐵 𝑦𝐶 𝐷)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem ss2iundf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ss2iundf.xph . . 3 𝑥𝜑
2 ss2iundf.ss . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐺)
3 df-ral 3066 . . . . . . . 8 (∀𝑦𝐶 ¬ 𝐵𝐷 ↔ ∀𝑦(𝑦𝐶 → ¬ 𝐵𝐷))
4 ss2iundf.el . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑌𝐶)
5 ss2iundf.yph . . . . . . . . . . . 12 𝑦𝜑
6 ss2iundf.a . . . . . . . . . . . . 13 𝑦𝐴
76nfcri 2891 . . . . . . . . . . . 12 𝑦 𝑥𝐴
85, 7nfan 1907 . . . . . . . . . . 11 𝑦(𝜑𝑥𝐴)
9 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
109eleq1d 2822 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → (𝑦𝐶𝑌𝐶))
1110biimprd 251 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → (𝑌𝐶𝑦𝐶))
12 ss2iundf.sub . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝑌) → 𝐷 = 𝐺)
1312sseq2d 3933 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑦 = 𝑌) → (𝐵𝐷𝐵𝐺))
14133expa 1120 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → (𝐵𝐷𝐵𝐺))
1514notbid 321 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → (¬ 𝐵𝐷 ↔ ¬ 𝐵𝐺))
1615biimpd 232 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → (¬ 𝐵𝐷 → ¬ 𝐵𝐺))
1711, 16imim12d 81 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑦 = 𝑌) → ((𝑦𝐶 → ¬ 𝐵𝐷) → (𝑌𝐶 → ¬ 𝐵𝐺)))
1817ex 416 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑦 = 𝑌 → ((𝑦𝐶 → ¬ 𝐵𝐷) → (𝑌𝐶 → ¬ 𝐵𝐺))))
198, 18alrimi 2211 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑦(𝑦 = 𝑌 → ((𝑦𝐶 → ¬ 𝐵𝐷) → (𝑌𝐶 → ¬ 𝐵𝐺))))
20 ss2iundf.y . . . . . . . . . . . . 13 𝑦𝑌
21 ss2iundf.yc . . . . . . . . . . . . 13 𝑦𝐶
2220, 21nfel 2918 . . . . . . . . . . . 12 𝑦 𝑌𝐶
23 ss2iundf.b . . . . . . . . . . . . . 14 𝑦𝐵
24 ss2iundf.g . . . . . . . . . . . . . 14 𝑦𝐺
2523, 24nfss 3892 . . . . . . . . . . . . 13 𝑦 𝐵𝐺
2625nfn 1865 . . . . . . . . . . . 12 𝑦 ¬ 𝐵𝐺
2722, 26nfim 1904 . . . . . . . . . . 11 𝑦(𝑌𝐶 → ¬ 𝐵𝐺)
2827, 20spcimgft 3502 . . . . . . . . . 10 (∀𝑦(𝑦 = 𝑌 → ((𝑦𝐶 → ¬ 𝐵𝐷) → (𝑌𝐶 → ¬ 𝐵𝐺))) → (𝑌𝐶 → (∀𝑦(𝑦𝐶 → ¬ 𝐵𝐷) → (𝑌𝐶 → ¬ 𝐵𝐺))))
2919, 4, 28sylc 65 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑦(𝑦𝐶 → ¬ 𝐵𝐷) → (𝑌𝐶 → ¬ 𝐵𝐺)))
304, 29mpid 44 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑦(𝑦𝐶 → ¬ 𝐵𝐷) → ¬ 𝐵𝐺))
313, 30syl5bi 245 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑦𝐶 ¬ 𝐵𝐷 → ¬ 𝐵𝐺))
3231con2d 136 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵𝐺 → ¬ ∀𝑦𝐶 ¬ 𝐵𝐷))
33 dfrex2 3161 . . . . . 6 (∃𝑦𝐶 𝐵𝐷 ↔ ¬ ∀𝑦𝐶 ¬ 𝐵𝐷)
3432, 33syl6ibr 255 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐺 → ∃𝑦𝐶 𝐵𝐷))
352, 34mpd 15 . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵𝐷)
3635ex 416 . . 3 (𝜑 → (𝑥𝐴 → ∃𝑦𝐶 𝐵𝐷))
371, 36ralrimi 3137 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝐵𝐷)
38 ssel 3893 . . . . . . . 8 (𝐵𝐷 → (𝑧𝐵𝑧𝐷))
3938reximi 3166 . . . . . . 7 (∃𝑦𝐶 𝐵𝐷 → ∃𝑦𝐶 (𝑧𝐵𝑧𝐷))
4023nfcri 2891 . . . . . . . 8 𝑦 𝑧𝐵
4140r19.37 3257 . . . . . . 7 (∃𝑦𝐶 (𝑧𝐵𝑧𝐷) → (𝑧𝐵 → ∃𝑦𝐶 𝑧𝐷))
4239, 41syl 17 . . . . . 6 (∃𝑦𝐶 𝐵𝐷 → (𝑧𝐵 → ∃𝑦𝐶 𝑧𝐷))
43 eliun 4908 . . . . . 6 (𝑧 𝑦𝐶 𝐷 ↔ ∃𝑦𝐶 𝑧𝐷)
4442, 43syl6ibr 255 . . . . 5 (∃𝑦𝐶 𝐵𝐷 → (𝑧𝐵𝑧 𝑦𝐶 𝐷))
4544ssrdv 3907 . . . 4 (∃𝑦𝐶 𝐵𝐷𝐵 𝑦𝐶 𝐷)
4645ralimi 3083 . . 3 (∀𝑥𝐴𝑦𝐶 𝐵𝐷 → ∀𝑥𝐴 𝐵 𝑦𝐶 𝐷)
47 df-iun 4906 . . . . 5 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
4847sseq1i 3929 . . . 4 ( 𝑥𝐴 𝐵 𝑦𝐶 𝐷 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ⊆ 𝑦𝐶 𝐷)
49 abss 3974 . . . 4 ({𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ⊆ 𝑦𝐶 𝐷 ↔ ∀𝑧(∃𝑥𝐴 𝑧𝐵𝑧 𝑦𝐶 𝐷))
50 dfss2 3886 . . . . . 6 (𝐵 𝑦𝐶 𝐷 ↔ ∀𝑧(𝑧𝐵𝑧 𝑦𝐶 𝐷))
5150ralbii 3088 . . . . 5 (∀𝑥𝐴 𝐵 𝑦𝐶 𝐷 ↔ ∀𝑥𝐴𝑧(𝑧𝐵𝑧 𝑦𝐶 𝐷))
52 ralcom4 3157 . . . . 5 (∀𝑥𝐴𝑧(𝑧𝐵𝑧 𝑦𝐶 𝐷) ↔ ∀𝑧𝑥𝐴 (𝑧𝐵𝑧 𝑦𝐶 𝐷))
53 ss2iundf.xc . . . . . . . . 9 𝑥𝐶
54 ss2iundf.d . . . . . . . . 9 𝑥𝐷
5553, 54nfiun 4934 . . . . . . . 8 𝑥 𝑦𝐶 𝐷
5655nfcri 2891 . . . . . . 7 𝑥 𝑧 𝑦𝐶 𝐷
5756r19.23 3233 . . . . . 6 (∀𝑥𝐴 (𝑧𝐵𝑧 𝑦𝐶 𝐷) ↔ (∃𝑥𝐴 𝑧𝐵𝑧 𝑦𝐶 𝐷))
5857albii 1827 . . . . 5 (∀𝑧𝑥𝐴 (𝑧𝐵𝑧 𝑦𝐶 𝐷) ↔ ∀𝑧(∃𝑥𝐴 𝑧𝐵𝑧 𝑦𝐶 𝐷))
5951, 52, 583bitrri 301 . . . 4 (∀𝑧(∃𝑥𝐴 𝑧𝐵𝑧 𝑦𝐶 𝐷) ↔ ∀𝑥𝐴 𝐵 𝑦𝐶 𝐷)
6048, 49, 593bitri 300 . . 3 ( 𝑥𝐴 𝐵 𝑦𝐶 𝐷 ↔ ∀𝑥𝐴 𝐵 𝑦𝐶 𝐷)
6146, 60sylibr 237 . 2 (∀𝑥𝐴𝑦𝐶 𝐵𝐷 𝑥𝐴 𝐵 𝑦𝐶 𝐷)
6237, 61syl 17 1 (𝜑 𝑥𝐴 𝐵 𝑦𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wnf 1791  wcel 2110  {cab 2714  wnfc 2884  wral 3061  wrex 3062  wss 3866   ciun 4904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-v 3410  df-in 3873  df-ss 3883  df-iun 4906
This theorem is referenced by:  ss2iundv  40945  cbviuneq12df  40946
  Copyright terms: Public domain W3C validator