![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.45zv | Structured version Visualization version GIF version |
Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.45zv | ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 3128 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.9rzv 4523 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | |
3 | 2 | orbi1d 915 | . 2 ⊢ (𝐴 ≠ ∅ → ((𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 ≠ wne 2946 ∃wrex 3076 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-ne 2947 df-ral 3068 df-rex 3077 df-dif 3979 df-nul 4353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |