| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2ex | Structured version Visualization version GIF version | ||
| Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2al 3165 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) | |
| 2 | 1 | r2exlem 3118 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r3ex 3168 reeanlem 3200 elxp2 5647 elinxp 5974 rnoprab2 7459 elrnmpores 7491 oeeu 8528 omxpenlem 9002 axcnre 11077 hash2prb 14397 hashle2prv 14403 pmtrrn2 19357 fsumvma 27140 umgredg 29101 fusgr2wsp2nb 30296 spanuni 31506 5oalem7 31622 3oalem3 31626 trsp2cyc 33078 fmla0xp 35355 elfuns 35888 ellines 36125 dalem20 39672 diblsmopel 41150 iunrelexpuztr 43692 sprssspr 47466 prprelb 47501 |
| Copyright terms: Public domain | W3C validator |