Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r2ex | Structured version Visualization version GIF version |
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
Ref | Expression |
---|---|
r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2al 3122 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) | |
2 | 1 | r2exlem 3221 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∃wex 1787 ∈ wcel 2110 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-ral 3066 df-rex 3067 |
This theorem is referenced by: reeanlem 3277 elxp2 5575 elinxp 5889 rnoprab2 7315 elrnmpores 7347 oeeu 8331 omxpenlem 8746 axcnre 10778 hash2prb 14038 hashle2prv 14044 pmtrrn2 18852 fsumvma 26094 umgredg 27229 fusgr2wsp2nb 28417 spanuni 29625 5oalem7 29741 3oalem3 29745 trsp2cyc 31109 fmla0xp 33058 elfuns 33954 ellines 34191 dalem20 37444 diblsmopel 38922 iunrelexpuztr 41004 sprssspr 44606 prprelb 44641 |
Copyright terms: Public domain | W3C validator |