![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2ex | Structured version Visualization version GIF version |
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
Ref | Expression |
---|---|
r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2al 3189 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) | |
2 | 1 | r2exlem 3138 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-ral 3057 df-rex 3066 |
This theorem is referenced by: reeanlem 3220 elxp2 5696 elinxp 6017 rnoprab2 7519 elrnmpores 7553 oeeu 8617 omxpenlem 9089 axcnre 11179 hash2prb 14457 hashle2prv 14463 pmtrrn2 19406 fsumvma 27133 umgredg 28938 fusgr2wsp2nb 30131 spanuni 31341 5oalem7 31457 3oalem3 31461 trsp2cyc 32822 fmla0xp 34929 elfuns 35447 ellines 35684 dalem20 39103 diblsmopel 40581 iunrelexpuztr 43072 sprssspr 46744 prprelb 46779 |
Copyright terms: Public domain | W3C validator |