MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2ex Structured version   Visualization version   GIF version

Theorem r2ex 3190
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.)
Assertion
Ref Expression
r2ex (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2ex
StepHypRef Expression
1 r2al 3189 . 2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
21r2exlem 3138 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wex 1774  wcel 2099  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-ral 3057  df-rex 3066
This theorem is referenced by:  reeanlem  3220  elxp2  5696  elinxp  6017  rnoprab2  7519  elrnmpores  7553  oeeu  8617  omxpenlem  9089  axcnre  11179  hash2prb  14457  hashle2prv  14463  pmtrrn2  19406  fsumvma  27133  umgredg  28938  fusgr2wsp2nb  30131  spanuni  31341  5oalem7  31457  3oalem3  31461  trsp2cyc  32822  fmla0xp  34929  elfuns  35447  ellines  35684  dalem20  39103  diblsmopel  40581  iunrelexpuztr  43072  sprssspr  46744  prprelb  46779
  Copyright terms: Public domain W3C validator