MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2ex Structured version   Visualization version   GIF version

Theorem r2ex 3170
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.)
Assertion
Ref Expression
r2ex (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2ex
StepHypRef Expression
1 r2al 3169 . 2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
21r2exlem 3122 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wex 1780  wcel 2113  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ral 3049  df-rex 3058
This theorem is referenced by:  r3ex  3172  reeanlem  3204  elxp2  5643  elinxp  5972  rnoprab2  7458  elrnmpores  7490  oeeu  8524  omxpenlem  8998  axcnre  11062  hash2prb  14381  hashle2prv  14387  pmtrrn2  19374  fsumvma  27152  umgredg  29118  fusgr2wsp2nb  30316  spanuni  31526  5oalem7  31642  3oalem3  31646  trsp2cyc  33099  fmla0xp  35448  elfuns  35978  ellines  36217  dalem20  39812  diblsmopel  41290  iunrelexpuztr  43836  sprssspr  47605  prprelb  47640
  Copyright terms: Public domain W3C validator