Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r2ex | Structured version Visualization version GIF version |
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
Ref | Expression |
---|---|
r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2al 3124 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) | |
2 | 1 | r2exlem 3230 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: reeanlem 3290 elxp2 5604 elinxp 5918 rnoprab2 7357 elrnmpores 7389 oeeu 8396 omxpenlem 8813 axcnre 10851 hash2prb 14114 hashle2prv 14120 pmtrrn2 18983 fsumvma 26266 umgredg 27411 fusgr2wsp2nb 28599 spanuni 29807 5oalem7 29923 3oalem3 29927 trsp2cyc 31292 fmla0xp 33245 elfuns 34144 ellines 34381 dalem20 37634 diblsmopel 39112 iunrelexpuztr 41216 sprssspr 44821 prprelb 44856 |
Copyright terms: Public domain | W3C validator |