| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2ex | Structured version Visualization version GIF version | ||
| Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2al 3180 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) | |
| 2 | 1 | r2exlem 3129 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: r3ex 3183 reeanlem 3212 elxp2 5678 elinxp 6006 rnoprab2 7513 elrnmpores 7545 oeeu 8615 omxpenlem 9087 axcnre 11178 hash2prb 14490 hashle2prv 14496 pmtrrn2 19441 fsumvma 27176 umgredg 29117 fusgr2wsp2nb 30315 spanuni 31525 5oalem7 31641 3oalem3 31645 trsp2cyc 33134 fmla0xp 35405 elfuns 35933 ellines 36170 dalem20 39712 diblsmopel 41190 iunrelexpuztr 43743 sprssspr 47495 prprelb 47530 |
| Copyright terms: Public domain | W3C validator |