MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2ex Structured version   Visualization version   GIF version

Theorem r2ex 3232
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.)
Assertion
Ref Expression
r2ex (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2ex
StepHypRef Expression
1 r2al 3118 . 2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
21r2exlem 3231 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wex 1782  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by:  reeanlem  3292  elxp2  5613  elinxp  5929  rnoprab2  7379  elrnmpores  7411  oeeu  8434  omxpenlem  8860  axcnre  10920  hash2prb  14186  hashle2prv  14192  pmtrrn2  19068  fsumvma  26361  umgredg  27508  fusgr2wsp2nb  28698  spanuni  29906  5oalem7  30022  3oalem3  30026  trsp2cyc  31390  fmla0xp  33345  elfuns  34217  ellines  34454  dalem20  37707  diblsmopel  39185  iunrelexpuztr  41327  sprssspr  44933  prprelb  44968
  Copyright terms: Public domain W3C validator