| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2ex | Structured version Visualization version GIF version | ||
| Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2al 3173 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) | |
| 2 | 1 | r2exlem 3122 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r3ex 3176 reeanlem 3208 elxp2 5662 elinxp 5990 rnoprab2 7495 elrnmpores 7527 oeeu 8567 omxpenlem 9042 axcnre 11117 hash2prb 14437 hashle2prv 14443 pmtrrn2 19390 fsumvma 27124 umgredg 29065 fusgr2wsp2nb 30263 spanuni 31473 5oalem7 31589 3oalem3 31593 trsp2cyc 33080 fmla0xp 35370 elfuns 35903 ellines 36140 dalem20 39687 diblsmopel 41165 iunrelexpuztr 43708 sprssspr 47482 prprelb 47517 |
| Copyright terms: Public domain | W3C validator |