MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcomf Structured version   Visualization version   GIF version

Theorem rexcomf 3283
Description: Commutation of restricted existential quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1 𝑦𝐴
ralcomf.2 𝑥𝐵
Assertion
Ref Expression
rexcomf (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexcomf
StepHypRef Expression
1 ancom 460 . . . . 5 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
21anbi1i 623 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜑))
322exbii 1852 . . 3 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑))
4 excom 2164 . . 3 (∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
53, 4bitri 274 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
6 ralcomf.1 . . 3 𝑦𝐴
76r2exf 3254 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
8 ralcomf.2 . . 3 𝑥𝐵
98r2exf 3254 . 2 (∃𝑦𝐵𝑥𝐴 𝜑 ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
105, 7, 93bitr4i 302 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wnfc 2886  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069
This theorem is referenced by:  rexcom4f  30720
  Copyright terms: Public domain W3C validator