MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabexgOLD Structured version   Visualization version   GIF version

Theorem rabexgOLD 5356
Description: Obsolete proof of rabexg 5355 as of 24-Jul-2025). (Contributed by NM, 23-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rabexgOLD (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabexgOLD
StepHypRef Expression
1 ssrab2 4103 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 ssexg 5341 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
31, 2mpan 689 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {crab 3443  Vcvv 3488  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator