MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabexgOLD Structured version   Visualization version   GIF version

Theorem rabexgOLD 5278
Description: Obsolete version of rabexg 5277 as of 24-Jul-2025). (Contributed by NM, 23-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rabexgOLD (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabexgOLD
StepHypRef Expression
1 ssrab2 4029 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 ssexg 5263 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
31, 2mpan 690 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  {crab 3396  Vcvv 3437  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator