![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
Ref | Expression |
---|---|
rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabelpw 5354 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
2 | 1 | elexd 3512 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3443 Vcvv 3488 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: rabex 5357 rabexd 5358 class2set 5373 exse 5660 elfvmptrab1w 7056 elfvmptrab1 7057 elovmporab 7696 elovmporab1w 7697 elovmporab1 7698 ovmpt3rabdm 7709 elovmpt3rab1 7710 suppval 8203 mpoxopoveq 8260 wdom2d 9649 scottex 9954 tskwe 10019 fin1a2lem12 10480 hashbclem 14501 wrdnfi 14596 wrd2f1tovbij 15009 hashdvds 16822 hashbcval 17049 brric 20530 psrass1lem 21975 psrcom 22011 dmatval 22519 cpmat 22736 fctop 23032 cctop 23034 ppttop 23035 epttop 23037 cldval 23052 neif 23129 neival 23131 neiptoptop 23160 neiptopnei 23161 ordtbaslem 23217 ordtbas2 23220 ordtopn1 23223 ordtopn2 23224 ordtrest2lem 23232 cmpsublem 23428 kgenval 23564 qtopval 23724 kqfval 23752 ordthmeolem 23830 elmptrab 23856 fbssfi 23866 fgval 23899 flimval 23992 flimfnfcls 24057 ptcmplem2 24082 ptcmplem3 24083 tsmsfbas 24157 eltsms 24162 utopval 24262 blvalps 24416 blval 24417 minveclem3b 25481 minveclem3 25482 minveclem4 25485 cutlt 27984 fusgredgfi 29360 nbgrval 29371 cusgrsize 29490 wwlks 29868 wwlksnextbij 29935 clwwlk 30015 vdn0conngrumgrv2 30228 vdgn1frgrv2 30328 frgrwopreglem1 30344 rabfodom 32533 ordtrest2NEWlem 33868 hasheuni 34049 sigaval 34075 ldgenpisyslem1 34127 ddemeas 34200 braew 34206 imambfm 34227 carsgval 34268 iscvm 35227 cvmsval 35234 fwddifval 36126 fnessref 36323 indexa 37693 supex2g 37697 rfovfvfvd 43965 rfovcnvf1od 43966 fsovfvfvd 43973 fsovcnvlem 43975 cnfex 44928 stoweidlem26 45947 stoweidlem31 45952 stoweidlem34 45955 stoweidlem46 45967 stoweidlem59 45980 salexct 46255 caragenval 46414 clnbgrval 47696 dmatALTbas 48130 lcoop 48140 |
Copyright terms: Public domain | W3C validator |