| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabelpw 5291 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
| 2 | 1 | elexd 3471 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3405 Vcvv 3447 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: rabex 5294 rabexd 5295 class2set 5310 exse 5598 elfvmptrab1w 6995 elfvmptrab1 6996 elovmporab 7635 elovmporab1w 7636 elovmporab1 7637 ovmpt3rabdm 7648 elovmpt3rab1 7649 suppval 8141 mpoxopoveq 8198 wdom2d 9533 scottex 9838 tskwe 9903 fin1a2lem12 10364 hashbclem 14417 wrdnfi 14513 wrd2f1tovbij 14926 hashdvds 16745 hashbcval 16973 brric 20413 psrass1lem 21841 psrcom 21877 dmatval 22379 cpmat 22596 fctop 22891 cctop 22893 ppttop 22894 epttop 22896 cldval 22910 neif 22987 neival 22989 neiptoptop 23018 neiptopnei 23019 ordtbaslem 23075 ordtbas2 23078 ordtopn1 23081 ordtopn2 23082 ordtrest2lem 23090 cmpsublem 23286 kgenval 23422 qtopval 23582 kqfval 23610 ordthmeolem 23688 elmptrab 23714 fbssfi 23724 fgval 23757 flimval 23850 flimfnfcls 23915 ptcmplem2 23940 ptcmplem3 23941 tsmsfbas 24015 eltsms 24020 utopval 24120 blvalps 24273 blval 24274 minveclem3b 25328 minveclem3 25329 minveclem4 25332 cutlt 27840 fusgredgfi 29252 nbgrval 29263 cusgrsize 29382 wwlks 29765 wwlksnextbij 29832 clwwlk 29912 vdn0conngrumgrv2 30125 vdgn1frgrv2 30225 frgrwopreglem1 30241 rabfodom 32434 ordtrest2NEWlem 33912 hasheuni 34075 sigaval 34101 ldgenpisyslem1 34153 ddemeas 34226 braew 34232 imambfm 34253 carsgval 34294 iscvm 35246 cvmsval 35253 fwddifval 36150 fnessref 36345 indexa 37727 supex2g 37731 rfovfvfvd 43992 rfovcnvf1od 43993 fsovfvfvd 44000 fsovcnvlem 44002 cnfex 45022 stoweidlem26 46024 stoweidlem31 46029 stoweidlem34 46032 stoweidlem46 46044 stoweidlem59 46057 salexct 46332 caragenval 46491 clnbgrval 47823 dmatALTbas 48390 lcoop 48400 |
| Copyright terms: Public domain | W3C validator |