Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4014 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | ssexg 5248 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {crab 3069 Vcvv 3433 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-in 3895 df-ss 3905 |
This theorem is referenced by: rabex 5257 rabexd 5258 class2set 5277 exse 5553 elfvmptrab1w 6910 elfvmptrab1 6911 elovmporab 7524 elovmporab1w 7525 elovmporab1 7526 ovmpt3rabdm 7537 elovmpt3rab1 7538 suppval 7988 mpoxopoveq 8044 wdom2d 9348 scottex 9652 tskwe 9717 fin1a2lem12 10176 hashbclem 14173 wrdnfi 14260 wrd2f1tovbij 14684 hashdvds 16485 hashbcval 16712 brric 19997 psrass1lemOLD 21152 psrass1lem 21155 psrcom 21187 dmatval 21650 cpmat 21867 fctop 22163 cctop 22165 ppttop 22166 epttop 22168 cldval 22183 neif 22260 neival 22262 neiptoptop 22291 neiptopnei 22292 ordtbaslem 22348 ordtbas2 22351 ordtopn1 22354 ordtopn2 22355 ordtrest2lem 22363 cmpsublem 22559 kgenval 22695 qtopval 22855 kqfval 22883 ordthmeolem 22961 elmptrab 22987 fbssfi 22997 fgval 23030 flimval 23123 flimfnfcls 23188 ptcmplem2 23213 ptcmplem3 23214 tsmsfbas 23288 eltsms 23293 utopval 23393 blvalps 23547 blval 23548 minveclem3b 24601 minveclem3 24602 minveclem4 24605 fusgredgfi 27701 nbgrval 27712 cusgrsize 27830 wwlks 28209 wwlksnextbij 28276 clwwlk 28356 vdn0conngrumgrv2 28569 vdgn1frgrv2 28669 frgrwopreglem1 28685 rabfodom 30860 ordtrest2NEWlem 31881 hasheuni 32062 sigaval 32088 ldgenpisyslem1 32140 ddemeas 32213 braew 32219 imambfm 32238 carsgval 32279 iscvm 33230 cvmsval 33237 fwddifval 34473 fnessref 34555 indexa 35900 supex2g 35904 rfovfvfvd 41618 rfovcnvf1od 41619 fsovfvfvd 41626 fsovcnvlem 41628 cnfex 42578 stoweidlem26 43574 stoweidlem31 43579 stoweidlem34 43582 stoweidlem46 43594 stoweidlem59 43607 salexct 43880 caragenval 44038 dmatALTbas 45753 lcoop 45763 |
Copyright terms: Public domain | W3C validator |