| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabelpw 5294 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
| 2 | 1 | elexd 3474 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3408 Vcvv 3450 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: rabex 5297 rabexd 5298 class2set 5313 exse 5601 elfvmptrab1w 6998 elfvmptrab1 6999 elovmporab 7638 elovmporab1w 7639 elovmporab1 7640 ovmpt3rabdm 7651 elovmpt3rab1 7652 suppval 8144 mpoxopoveq 8201 wdom2d 9540 scottex 9845 tskwe 9910 fin1a2lem12 10371 hashbclem 14424 wrdnfi 14520 wrd2f1tovbij 14933 hashdvds 16752 hashbcval 16980 brric 20420 psrass1lem 21848 psrcom 21884 dmatval 22386 cpmat 22603 fctop 22898 cctop 22900 ppttop 22901 epttop 22903 cldval 22917 neif 22994 neival 22996 neiptoptop 23025 neiptopnei 23026 ordtbaslem 23082 ordtbas2 23085 ordtopn1 23088 ordtopn2 23089 ordtrest2lem 23097 cmpsublem 23293 kgenval 23429 qtopval 23589 kqfval 23617 ordthmeolem 23695 elmptrab 23721 fbssfi 23731 fgval 23764 flimval 23857 flimfnfcls 23922 ptcmplem2 23947 ptcmplem3 23948 tsmsfbas 24022 eltsms 24027 utopval 24127 blvalps 24280 blval 24281 minveclem3b 25335 minveclem3 25336 minveclem4 25339 cutlt 27847 fusgredgfi 29259 nbgrval 29270 cusgrsize 29389 wwlks 29772 wwlksnextbij 29839 clwwlk 29919 vdn0conngrumgrv2 30132 vdgn1frgrv2 30232 frgrwopreglem1 30248 rabfodom 32441 ordtrest2NEWlem 33919 hasheuni 34082 sigaval 34108 ldgenpisyslem1 34160 ddemeas 34233 braew 34239 imambfm 34260 carsgval 34301 iscvm 35253 cvmsval 35260 fwddifval 36157 fnessref 36352 indexa 37734 supex2g 37738 rfovfvfvd 43999 rfovcnvf1od 44000 fsovfvfvd 44007 fsovcnvlem 44009 cnfex 45029 stoweidlem26 46031 stoweidlem31 46036 stoweidlem34 46039 stoweidlem46 46051 stoweidlem59 46064 salexct 46339 caragenval 46498 clnbgrval 47827 dmatALTbas 48394 lcoop 48404 |
| Copyright terms: Public domain | W3C validator |