| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabelpw 5269 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
| 2 | 1 | elexd 3460 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4547 |
| This theorem is referenced by: rabex 5272 rabexd 5273 class2set 5288 exse 5571 elfvmptrab1w 6951 elfvmptrab1 6952 elovmporab 7587 elovmporab1w 7588 elovmporab1 7589 ovmpt3rabdm 7600 elovmpt3rab1 7601 suppval 8087 mpoxopoveq 8144 wdom2d 9461 scottex 9773 tskwe 9838 fin1a2lem12 10297 hashbclem 14354 wrdnfi 14450 wrd2f1tovbij 14862 hashdvds 16681 hashbcval 16909 brric 20414 psrass1lem 21864 psrcom 21900 dmatval 22402 cpmat 22619 fctop 22914 cctop 22916 ppttop 22917 epttop 22919 cldval 22933 neif 23010 neival 23012 neiptoptop 23041 neiptopnei 23042 ordtbaslem 23098 ordtbas2 23101 ordtopn1 23104 ordtopn2 23105 ordtrest2lem 23113 cmpsublem 23309 kgenval 23445 qtopval 23605 kqfval 23633 ordthmeolem 23711 elmptrab 23737 fbssfi 23747 fgval 23780 flimval 23873 flimfnfcls 23938 ptcmplem2 23963 ptcmplem3 23964 tsmsfbas 24038 eltsms 24043 utopval 24142 blvalps 24295 blval 24296 minveclem3b 25350 minveclem3 25351 minveclem4 25354 cutlt 27871 fusgredgfi 29298 nbgrval 29309 cusgrsize 29428 wwlks 29808 wwlksnextbij 29875 clwwlk 29955 vdn0conngrumgrv2 30168 vdgn1frgrv2 30268 frgrwopreglem1 30284 rabfodom 32477 ordtrest2NEWlem 33927 hasheuni 34090 sigaval 34116 ldgenpisyslem1 34168 ddemeas 34241 braew 34247 imambfm 34267 carsgval 34308 iscvm 35295 cvmsval 35302 fwddifval 36196 fnessref 36391 indexa 37773 supex2g 37777 rfovfvfvd 44036 rfovcnvf1od 44037 fsovfvfvd 44044 fsovcnvlem 44046 cnfex 45065 stoweidlem26 46064 stoweidlem31 46069 stoweidlem34 46072 stoweidlem46 46084 stoweidlem59 46097 salexct 46372 caragenval 46531 clnbgrval 47853 dmatALTbas 48433 lcoop 48443 |
| Copyright terms: Public domain | W3C validator |