Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4009 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | ssexg 5242 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: rabex 5251 rabexd 5252 class2set 5271 exse 5543 elfvmptrab1w 6883 elfvmptrab1 6884 elovmporab 7493 elovmporab1w 7494 elovmporab1 7495 ovmpt3rabdm 7506 elovmpt3rab1 7507 suppval 7950 mpoxopoveq 8006 wdom2d 9269 scottex 9574 tskwe 9639 fin1a2lem12 10098 hashbclem 14092 wrdnfi 14179 wrd2f1tovbij 14603 hashdvds 16404 hashbcval 16631 brric 19903 psrass1lemOLD 21053 psrass1lem 21056 psrcom 21088 dmatval 21549 cpmat 21766 fctop 22062 cctop 22064 ppttop 22065 epttop 22067 cldval 22082 neif 22159 neival 22161 neiptoptop 22190 neiptopnei 22191 ordtbaslem 22247 ordtbas2 22250 ordtopn1 22253 ordtopn2 22254 ordtrest2lem 22262 cmpsublem 22458 kgenval 22594 qtopval 22754 kqfval 22782 ordthmeolem 22860 elmptrab 22886 fbssfi 22896 fgval 22929 flimval 23022 flimfnfcls 23087 ptcmplem2 23112 ptcmplem3 23113 tsmsfbas 23187 eltsms 23192 utopval 23292 blvalps 23446 blval 23447 minveclem3b 24497 minveclem3 24498 minveclem4 24501 fusgredgfi 27595 nbgrval 27606 cusgrsize 27724 wwlks 28101 wwlksnextbij 28168 clwwlk 28248 vdn0conngrumgrv2 28461 vdgn1frgrv2 28561 frgrwopreglem1 28577 rabfodom 30752 ordtrest2NEWlem 31774 hasheuni 31953 sigaval 31979 ldgenpisyslem1 32031 ddemeas 32104 braew 32110 imambfm 32129 carsgval 32170 iscvm 33121 cvmsval 33128 fwddifval 34391 fnessref 34473 indexa 35818 supex2g 35822 rfovfvfvd 41500 rfovcnvf1od 41501 fsovfvfvd 41508 fsovcnvlem 41510 cnfex 42460 stoweidlem26 43457 stoweidlem31 43462 stoweidlem34 43465 stoweidlem46 43477 stoweidlem59 43490 salexct 43763 caragenval 43921 dmatALTbas 45630 lcoop 45640 |
Copyright terms: Public domain | W3C validator |