| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabelpw 5286 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
| 2 | 1 | elexd 3468 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3402 Vcvv 3444 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rabex 5289 rabexd 5290 class2set 5305 exse 5591 elfvmptrab1w 6977 elfvmptrab1 6978 elovmporab 7615 elovmporab1w 7616 elovmporab1 7617 ovmpt3rabdm 7628 elovmpt3rab1 7629 suppval 8118 mpoxopoveq 8175 wdom2d 9509 scottex 9814 tskwe 9879 fin1a2lem12 10340 hashbclem 14393 wrdnfi 14489 wrd2f1tovbij 14902 hashdvds 16721 hashbcval 16949 brric 20389 psrass1lem 21817 psrcom 21853 dmatval 22355 cpmat 22572 fctop 22867 cctop 22869 ppttop 22870 epttop 22872 cldval 22886 neif 22963 neival 22965 neiptoptop 22994 neiptopnei 22995 ordtbaslem 23051 ordtbas2 23054 ordtopn1 23057 ordtopn2 23058 ordtrest2lem 23066 cmpsublem 23262 kgenval 23398 qtopval 23558 kqfval 23586 ordthmeolem 23664 elmptrab 23690 fbssfi 23700 fgval 23733 flimval 23826 flimfnfcls 23891 ptcmplem2 23916 ptcmplem3 23917 tsmsfbas 23991 eltsms 23996 utopval 24096 blvalps 24249 blval 24250 minveclem3b 25304 minveclem3 25305 minveclem4 25308 cutlt 27816 fusgredgfi 29228 nbgrval 29239 cusgrsize 29358 wwlks 29738 wwlksnextbij 29805 clwwlk 29885 vdn0conngrumgrv2 30098 vdgn1frgrv2 30198 frgrwopreglem1 30214 rabfodom 32407 ordtrest2NEWlem 33885 hasheuni 34048 sigaval 34074 ldgenpisyslem1 34126 ddemeas 34199 braew 34205 imambfm 34226 carsgval 34267 iscvm 35219 cvmsval 35226 fwddifval 36123 fnessref 36318 indexa 37700 supex2g 37704 rfovfvfvd 43965 rfovcnvf1od 43966 fsovfvfvd 43973 fsovcnvlem 43975 cnfex 44995 stoweidlem26 45997 stoweidlem31 46002 stoweidlem34 46005 stoweidlem46 46017 stoweidlem59 46030 salexct 46305 caragenval 46464 clnbgrval 47796 dmatALTbas 48363 lcoop 48373 |
| Copyright terms: Public domain | W3C validator |