![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3883 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | ssexg 4999 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | mpan 682 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {crab 3093 Vcvv 3385 ⊆ wss 3769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-in 3776 df-ss 3783 |
This theorem is referenced by: rabex 5007 rabexd 5008 class2set 5024 exse 5276 elfvmptrab1 6530 elovmpt2rab 7114 elovmpt2rab1 7115 ovmpt3rabdm 7126 elovmpt3rab1 7127 suppval 7534 mpt2xopoveq 7583 wdom2d 8727 scottex 8998 tskwe 9062 fin1a2lem12 9521 hashbclem 13485 wrdnfi 13568 wrd2f1tovbij 14046 hashdvds 15813 hashbcval 16039 brric 19062 psrass1lem 19700 psrcom 19732 dmatval 20624 cpmat 20842 fctop 21137 cctop 21139 ppttop 21140 epttop 21142 cldval 21156 neif 21233 neival 21235 neiptoptop 21264 neiptopnei 21265 ordtbaslem 21321 ordtbas2 21324 ordtopn1 21327 ordtopn2 21328 ordtrest2lem 21336 cmpsublem 21531 kgenval 21667 qtopval 21827 kqfval 21855 ordthmeolem 21933 elmptrab 21959 fbssfi 21969 fgval 22002 flimval 22095 flimfnfcls 22160 ptcmplem2 22185 ptcmplem3 22186 tsmsfbas 22259 eltsms 22264 utopval 22364 blvalps 22518 blval 22519 minveclem3b 23538 minveclem3 23539 minveclem4 23542 fusgredgfi 26559 nbgrval 26571 cusgrsize 26704 wwlks 27086 wwlksnextbij 27179 wwlksnextbijOLD 27180 clwwlk 27276 vdn0conngrumgrv2 27540 vdgn1frgrv2 27645 frgrwopreglem1 27661 rabfodom 29862 ordtrest2NEWlem 30484 hasheuni 30663 sigaval 30689 ldgenpisyslem1 30742 ddemeas 30815 braew 30821 imambfm 30840 carsgval 30881 iscvm 31758 cvmsval 31765 fwddifval 32782 fnessref 32864 indexa 34016 supex2g 34020 rfovfvfvd 39079 rfovcnvf1od 39080 fsovfvfvd 39087 fsovcnvlem 39089 cnfex 39947 stoweidlem26 40986 stoweidlem31 40991 stoweidlem34 40994 stoweidlem46 41006 stoweidlem59 41019 salexct 41295 caragenval 41453 dmatALTbas 42989 lcoop 42999 |
Copyright terms: Public domain | W3C validator |