| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabelpw 5306 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
| 2 | 1 | elexd 3483 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {crab 3415 Vcvv 3459 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: rabex 5309 rabexd 5310 class2set 5325 exse 5614 elfvmptrab1w 7012 elfvmptrab1 7013 elovmporab 7651 elovmporab1w 7652 elovmporab1 7653 ovmpt3rabdm 7664 elovmpt3rab1 7665 suppval 8159 mpoxopoveq 8216 wdom2d 9592 scottex 9897 tskwe 9962 fin1a2lem12 10423 hashbclem 14468 wrdnfi 14564 wrd2f1tovbij 14977 hashdvds 16792 hashbcval 17020 brric 20462 psrass1lem 21890 psrcom 21926 dmatval 22428 cpmat 22645 fctop 22940 cctop 22942 ppttop 22943 epttop 22945 cldval 22959 neif 23036 neival 23038 neiptoptop 23067 neiptopnei 23068 ordtbaslem 23124 ordtbas2 23127 ordtopn1 23130 ordtopn2 23131 ordtrest2lem 23139 cmpsublem 23335 kgenval 23471 qtopval 23631 kqfval 23659 ordthmeolem 23737 elmptrab 23763 fbssfi 23773 fgval 23806 flimval 23899 flimfnfcls 23964 ptcmplem2 23989 ptcmplem3 23990 tsmsfbas 24064 eltsms 24069 utopval 24169 blvalps 24322 blval 24323 minveclem3b 25378 minveclem3 25379 minveclem4 25382 cutlt 27883 fusgredgfi 29250 nbgrval 29261 cusgrsize 29380 wwlks 29763 wwlksnextbij 29830 clwwlk 29910 vdn0conngrumgrv2 30123 vdgn1frgrv2 30223 frgrwopreglem1 30239 rabfodom 32432 ordtrest2NEWlem 33899 hasheuni 34062 sigaval 34088 ldgenpisyslem1 34140 ddemeas 34213 braew 34219 imambfm 34240 carsgval 34281 iscvm 35227 cvmsval 35234 fwddifval 36126 fnessref 36321 indexa 37703 supex2g 37707 rfovfvfvd 43974 rfovcnvf1od 43975 fsovfvfvd 43982 fsovcnvlem 43984 cnfex 45000 stoweidlem26 46003 stoweidlem31 46008 stoweidlem34 46011 stoweidlem46 46023 stoweidlem59 46036 salexct 46311 caragenval 46470 clnbgrval 47784 dmatALTbas 48325 lcoop 48335 |
| Copyright terms: Public domain | W3C validator |