| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabelpw 5275 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | |
| 2 | 1 | elexd 3460 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3394 Vcvv 3436 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: rabex 5278 rabexd 5279 class2set 5294 exse 5579 elfvmptrab1w 6957 elfvmptrab1 6958 elovmporab 7595 elovmporab1w 7596 elovmporab1 7597 ovmpt3rabdm 7608 elovmpt3rab1 7609 suppval 8095 mpoxopoveq 8152 wdom2d 9472 scottex 9781 tskwe 9846 fin1a2lem12 10305 hashbclem 14359 wrdnfi 14455 wrd2f1tovbij 14867 hashdvds 16686 hashbcval 16914 brric 20389 psrass1lem 21839 psrcom 21875 dmatval 22377 cpmat 22594 fctop 22889 cctop 22891 ppttop 22892 epttop 22894 cldval 22908 neif 22985 neival 22987 neiptoptop 23016 neiptopnei 23017 ordtbaslem 23073 ordtbas2 23076 ordtopn1 23079 ordtopn2 23080 ordtrest2lem 23088 cmpsublem 23284 kgenval 23420 qtopval 23580 kqfval 23608 ordthmeolem 23686 elmptrab 23712 fbssfi 23722 fgval 23755 flimval 23848 flimfnfcls 23913 ptcmplem2 23938 ptcmplem3 23939 tsmsfbas 24013 eltsms 24018 utopval 24118 blvalps 24271 blval 24272 minveclem3b 25326 minveclem3 25327 minveclem4 25330 cutlt 27845 fusgredgfi 29270 nbgrval 29281 cusgrsize 29400 wwlks 29780 wwlksnextbij 29847 clwwlk 29927 vdn0conngrumgrv2 30140 vdgn1frgrv2 30240 frgrwopreglem1 30256 rabfodom 32449 ordtrest2NEWlem 33889 hasheuni 34052 sigaval 34078 ldgenpisyslem1 34130 ddemeas 34203 braew 34209 imambfm 34230 carsgval 34271 iscvm 35232 cvmsval 35239 fwddifval 36136 fnessref 36331 indexa 37713 supex2g 37717 rfovfvfvd 43976 rfovcnvf1od 43977 fsovfvfvd 43984 fsovcnvlem 43986 cnfex 45006 stoweidlem26 46007 stoweidlem31 46012 stoweidlem34 46015 stoweidlem46 46027 stoweidlem59 46040 salexct 46315 caragenval 46474 clnbgrval 47806 dmatALTbas 48386 lcoop 48396 |
| Copyright terms: Public domain | W3C validator |