| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3962 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5260 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3509 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 |
| This theorem is referenced by: ssexd 5263 prcssprc 5266 difexg 5268 elpw2g 5272 rabexgOLD 5277 elssabg 5282 abssexg 5321 snexALT 5322 sess1 5584 sess2 5585 riinint 5913 resexg 5978 trsuc 6396 ordsssuc2 6400 mptexg 7157 mptexgf 7158 isofr2 7281 ofres 7632 brrpssg 7661 unexb 7683 unexbOLD 7684 xpexg 7686 abnexg 7692 difex2 7696 uniexr 7699 dmexg 7834 rnexg 7835 resiexg 7845 imaexg 7846 exse2 7850 cnvexg 7857 coexg 7862 fabexgOLD 7872 f1oabexgOLD 7876 resfunexgALT 7883 cofunexg 7884 fnexALT 7886 f1dmex 7892 oprabexd 7910 mpoexxg 8010 suppfnss 8122 tposexg 8173 tz7.48-3 8366 oaabs 8566 erex 8649 mapexOLD 8759 pmvalg 8764 elpmg 8770 elmapssres 8794 pmss12g 8796 ralxpmap 8823 ixpexg 8849 domssl 8923 ssdomg 8925 fiprc 8970 domunsncan 8994 infensuc 9072 pssnn 9082 ssfi 9087 enp1i 9168 unbnn 9185 fodomfi 9201 fodomfiOLD 9220 fival 9302 fiss 9314 dffi3 9321 hartogslem2 9435 card2on 9446 wdomima2g 9478 unxpwdom2 9480 unxpwdom 9481 harwdom 9483 oemapvali 9580 ackbij1lem11 10123 cofsmo 10163 ssfin4 10204 fin23lem11 10211 ssfin2 10214 ssfin3ds 10224 isfin1-3 10280 hsmex3 10328 axdc2lem 10342 ac6num 10373 ttukeylem1 10403 dmct 10418 ondomon 10457 fpwwe2lem3 10527 fpwwe2lem11 10535 fpwwe2lem12 10536 canthwe 10545 wuncss 10639 genpv 10893 genpdm 10896 hashss 14316 wrdexb 14432 shftfval 14977 o1of2 15520 o1rlimmul 15526 isercolllem2 15573 isstruct2 17060 ressval3d 17157 ressabs 17159 prdsbas 17361 fnmrc 17513 mrcfval 17514 isacs1i 17563 mreacs 17564 isssc 17727 ipolerval 18438 ress0g 18636 sylow2a 19498 islbs3 21062 toponsspwpw 22807 basdif0 22838 tgval 22840 eltg 22842 eltg2 22843 tgss 22853 basgen2 22874 2basgen 22875 bastop1 22878 topnex 22881 resttopon 23046 restabs 23050 restcld 23057 restfpw 23064 restcls 23066 restntr 23067 ordtbas2 23076 ordtbas 23077 lmfval 23117 cnrest 23170 cmpcov 23274 cmpsublem 23284 cmpsub 23285 2ndcomap 23343 islocfin 23402 txss12 23490 ptrescn 23524 trfbas2 23728 trfbas 23729 isfildlem 23742 snfbas 23751 trfil1 23771 trfil2 23772 trufil 23795 ssufl 23803 hauspwpwf1 23872 ustval 24088 metrest 24410 cnheibor 24852 metcld2 25205 bcthlem1 25222 mbfimaopn2 25556 0pledm 25572 dvbss 25800 dvreslem 25808 dvres2lem 25809 dvcnp2 25819 dvcnp2OLD 25820 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvcnvrelem2 25921 elply2 26099 plyf 26101 plyss 26102 elplyr 26104 plyeq0lem 26113 plyeq0 26114 plyaddlem 26118 plymullem 26119 dgrlem 26132 coeidlem 26140 ulmcn 26306 pserulm 26329 rabexgfGS 32448 abrexdomjm 32456 aciunf1 32614 indval 32805 ress1r 33183 pcmplfin 33843 metidval 33873 sigagenss 34132 measval 34181 omsfval 34278 omssubaddlem 34283 omssubadd 34284 carsggect 34302 fineqvnttrclse 35093 erdsze2lem1 35196 erdsze2lem2 35197 cvxpconn 35235 elmsta 35541 dfon2lem3 35779 altxpexg 35972 ivthALT 36329 filnetlem3 36374 bj-sselpwuni 37044 bj-elpwg 37046 bj-restsnss 37077 bj-restsnss2 37078 bj-restb 37088 bj-restuni2 37092 abrexdom 37730 sdclem2 37742 sdclem1 37743 brssr 38498 sticksstones4 42142 sticksstones14 42153 pssexg 42219 elrfirn 42688 pwssplit4 43082 hbtlem1 43116 hbtlem7 43118 inaex 44290 rabexgf 45022 dvnprodlem2 45948 qndenserrnbllem 46295 sge0ss 46413 psmeasurelem 46471 caragensplit 46501 omeunile 46506 caragenuncl 46514 omeunle 46517 omeiunlempt 46521 carageniuncllem2 46523 fcdmvafv2v 47240 prprval 47518 mpoexxg2 48342 gsumlsscl 48384 lincellss 48431 incat 49606 |
| Copyright terms: Public domain | W3C validator |