| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3970 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3448 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5271 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3517 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: ssexd 5274 prcssprc 5277 difexg 5279 elpw2g 5283 rabexgOLD 5288 elssabg 5293 abssexg 5332 snexALT 5333 sess1 5596 sess2 5597 riinint 5924 resexg 5987 trsuc 6409 ordsssuc2 6413 mptexg 7177 mptexgf 7178 isofr2 7301 ofres 7652 brrpssg 7681 unexb 7703 unexbOLD 7704 xpexg 7706 abnexg 7712 difex2 7716 uniexr 7719 dmexg 7857 rnexg 7858 resiexg 7868 imaexg 7869 exse2 7873 cnvexg 7880 coexg 7885 fabexgOLD 7895 f1oabexgOLD 7899 resfunexgALT 7906 cofunexg 7907 fnexALT 7909 f1dmex 7915 oprabexd 7933 mpoexxg 8033 suppfnss 8145 tposexg 8196 tz7.48-3 8389 oaabs 8589 erex 8672 mapexOLD 8782 pmvalg 8787 elpmg 8793 elmapssres 8817 pmss12g 8819 ralxpmap 8846 ixpexg 8872 domssl 8946 ssdomg 8948 fiprc 8993 domunsncan 9018 infensuc 9096 pssnn 9109 ssfi 9114 enp1i 9200 unbnn 9219 fodomfi 9237 fodomfiOLD 9257 fival 9339 fiss 9351 dffi3 9358 hartogslem2 9472 card2on 9483 wdomima2g 9515 unxpwdom2 9517 unxpwdom 9518 harwdom 9520 oemapvali 9615 ackbij1lem11 10160 cofsmo 10200 ssfin4 10241 fin23lem11 10248 ssfin2 10251 ssfin3ds 10261 isfin1-3 10317 hsmex3 10365 axdc2lem 10379 ac6num 10410 ttukeylem1 10440 dmct 10455 ondomon 10494 fpwwe2lem3 10564 fpwwe2lem11 10572 fpwwe2lem12 10573 canthwe 10582 wuncss 10676 genpv 10930 genpdm 10933 hashss 14352 wrdexb 14468 shftfval 15013 o1of2 15556 o1rlimmul 15562 isercolllem2 15609 isstruct2 17096 ressval3d 17193 ressabs 17195 prdsbas 17397 fnmrc 17549 mrcfval 17550 isacs1i 17599 mreacs 17600 isssc 17763 ipolerval 18474 ress0g 18672 sylow2a 19534 islbs3 21098 toponsspwpw 22843 basdif0 22874 tgval 22876 eltg 22878 eltg2 22879 tgss 22889 basgen2 22910 2basgen 22911 bastop1 22914 topnex 22917 resttopon 23082 restabs 23086 restcld 23093 restfpw 23100 restcls 23102 restntr 23103 ordtbas2 23112 ordtbas 23113 lmfval 23153 cnrest 23206 cmpcov 23310 cmpsublem 23320 cmpsub 23321 2ndcomap 23379 islocfin 23438 txss12 23526 ptrescn 23560 trfbas2 23764 trfbas 23765 isfildlem 23778 snfbas 23787 trfil1 23807 trfil2 23808 trufil 23831 ssufl 23839 hauspwpwf1 23908 ustval 24124 metrest 24446 cnheibor 24888 metcld2 25241 bcthlem1 25258 mbfimaopn2 25592 0pledm 25608 dvbss 25836 dvreslem 25844 dvres2lem 25845 dvcnp2 25855 dvcnp2OLD 25856 dvaddbr 25874 dvmulbr 25875 dvmulbrOLD 25876 dvcnvrelem2 25957 elply2 26135 plyf 26137 plyss 26138 elplyr 26140 plyeq0lem 26149 plyeq0 26150 plyaddlem 26154 plymullem 26155 dgrlem 26168 coeidlem 26176 ulmcn 26342 pserulm 26365 rabexgfGS 32479 abrexdomjm 32487 aciunf1 32638 indval 32827 ress1r 33202 pcmplfin 33844 metidval 33874 sigagenss 34133 measval 34182 omsfval 34279 omssubaddlem 34284 omssubadd 34285 carsggect 34303 erdsze2lem1 35184 erdsze2lem2 35185 cvxpconn 35223 elmsta 35529 dfon2lem3 35767 altxpexg 35960 ivthALT 36317 filnetlem3 36362 bj-sselpwuni 37032 bj-elpwg 37034 bj-restsnss 37065 bj-restsnss2 37066 bj-restb 37076 bj-restuni2 37080 abrexdom 37718 sdclem2 37730 sdclem1 37731 brssr 38486 sticksstones4 42131 sticksstones14 42142 pssexg 42208 elrfirn 42677 pwssplit4 43072 hbtlem1 43106 hbtlem7 43108 inaex 44280 rabexgf 45012 dvnprodlem2 45939 qndenserrnbllem 46286 sge0ss 46404 psmeasurelem 46462 caragensplit 46492 omeunile 46497 caragenuncl 46505 omeunle 46508 omeiunlempt 46512 carageniuncllem2 46514 fcdmvafv2v 47231 prprval 47509 mpoexxg2 48320 gsumlsscl 48362 lincellss 48409 incat 49584 |
| Copyright terms: Public domain | W3C validator |