| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3976 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5279 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3523 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: ssexd 5282 prcssprc 5285 difexg 5287 elpw2g 5291 rabexgOLD 5296 elssabg 5301 abssexg 5340 snexALT 5341 sess1 5606 sess2 5607 riinint 5938 resexg 6001 trsuc 6424 ordsssuc2 6428 mptexg 7198 mptexgf 7199 isofr2 7322 ofres 7675 brrpssg 7704 unexb 7726 unexbOLD 7727 xpexg 7729 abnexg 7735 difex2 7739 uniexr 7742 dmexg 7880 rnexg 7881 resiexg 7891 imaexg 7892 exse2 7896 cnvexg 7903 coexg 7908 fabexgOLD 7918 f1oabexgOLD 7922 resfunexgALT 7929 cofunexg 7930 fnexALT 7932 f1dmex 7938 oprabexd 7957 mpoexxg 8057 suppfnss 8171 tposexg 8222 tz7.48-3 8415 oaabs 8615 erex 8698 mapexOLD 8808 pmvalg 8813 elpmg 8819 elmapssres 8843 pmss12g 8845 ralxpmap 8872 ixpexg 8898 domssl 8972 ssdomg 8974 fiprc 9019 domunsncan 9046 infensuc 9125 pssnn 9138 ssfi 9143 enp1i 9231 unbnn 9250 fodomfi 9268 fodomfiOLD 9288 fival 9370 fiss 9382 dffi3 9389 hartogslem2 9503 card2on 9514 wdomima2g 9546 unxpwdom2 9548 unxpwdom 9549 harwdom 9551 oemapvali 9644 ackbij1lem11 10189 cofsmo 10229 ssfin4 10270 fin23lem11 10277 ssfin2 10280 ssfin3ds 10290 isfin1-3 10346 hsmex3 10394 axdc2lem 10408 ac6num 10439 ttukeylem1 10469 dmct 10484 ondomon 10523 fpwwe2lem3 10593 fpwwe2lem11 10601 fpwwe2lem12 10602 canthwe 10611 wuncss 10705 genpv 10959 genpdm 10962 hashss 14381 wrdexb 14497 shftfval 15043 o1of2 15586 o1rlimmul 15592 isercolllem2 15639 isstruct2 17126 ressval3d 17223 ressabs 17225 prdsbas 17427 fnmrc 17575 mrcfval 17576 isacs1i 17625 mreacs 17626 isssc 17789 ipolerval 18498 ress0g 18696 sylow2a 19556 islbs3 21072 toponsspwpw 22816 basdif0 22847 tgval 22849 eltg 22851 eltg2 22852 tgss 22862 basgen2 22883 2basgen 22884 bastop1 22887 topnex 22890 resttopon 23055 restabs 23059 restcld 23066 restfpw 23073 restcls 23075 restntr 23076 ordtbas2 23085 ordtbas 23086 lmfval 23126 cnrest 23179 cmpcov 23283 cmpsublem 23293 cmpsub 23294 2ndcomap 23352 islocfin 23411 txss12 23499 ptrescn 23533 trfbas2 23737 trfbas 23738 isfildlem 23751 snfbas 23760 trfil1 23780 trfil2 23781 trufil 23804 ssufl 23812 hauspwpwf1 23881 ustval 24097 metrest 24419 cnheibor 24861 metcld2 25214 bcthlem1 25231 mbfimaopn2 25565 0pledm 25581 dvbss 25809 dvreslem 25817 dvres2lem 25818 dvcnp2 25828 dvcnp2OLD 25829 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvcnvrelem2 25930 elply2 26108 plyf 26110 plyss 26111 elplyr 26113 plyeq0lem 26122 plyeq0 26123 plyaddlem 26127 plymullem 26128 dgrlem 26141 coeidlem 26149 ulmcn 26315 pserulm 26338 rabexgfGS 32435 abrexdomjm 32443 aciunf1 32594 indval 32783 ress1r 33192 pcmplfin 33857 metidval 33887 sigagenss 34146 measval 34195 omsfval 34292 omssubaddlem 34297 omssubadd 34298 carsggect 34316 erdsze2lem1 35197 erdsze2lem2 35198 cvxpconn 35236 elmsta 35542 dfon2lem3 35780 altxpexg 35973 ivthALT 36330 filnetlem3 36375 bj-sselpwuni 37045 bj-elpwg 37047 bj-restsnss 37078 bj-restsnss2 37079 bj-restb 37089 bj-restuni2 37093 abrexdom 37731 sdclem2 37743 sdclem1 37744 brssr 38499 sticksstones4 42144 sticksstones14 42155 pssexg 42221 elrfirn 42690 pwssplit4 43085 hbtlem1 43119 hbtlem7 43121 inaex 44293 rabexgf 45025 dvnprodlem2 45952 qndenserrnbllem 46299 sge0ss 46417 psmeasurelem 46475 caragensplit 46505 omeunile 46510 caragenuncl 46518 omeunle 46521 omeiunlempt 46525 carageniuncllem2 46527 fcdmvafv2v 47241 prprval 47519 mpoexxg2 48330 gsumlsscl 48372 lincellss 48419 incat 49594 |
| Copyright terms: Public domain | W3C validator |