| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3985 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5291 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3533 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: ssexd 5294 prcssprc 5297 difexg 5299 elpw2g 5303 rabexgOLD 5308 elssabg 5313 abssexg 5352 snexALT 5353 sess1 5619 sess2 5620 riinint 5951 resexg 6014 trsuc 6441 ordsssuc2 6445 mptexg 7213 mptexgf 7214 isofr2 7337 ofres 7690 brrpssg 7719 unexb 7741 unexbOLD 7742 xpexg 7744 abnexg 7750 difex2 7754 uniexr 7757 dmexg 7897 rnexg 7898 resiexg 7908 imaexg 7909 exse2 7913 cnvexg 7920 coexg 7925 fabexgOLD 7935 f1oabexgOLD 7939 resfunexgALT 7946 cofunexg 7947 fnexALT 7949 f1dmex 7955 oprabexd 7974 mpoexxg 8074 suppfnss 8188 tposexg 8239 tz7.48-3 8458 oaabs 8660 erex 8743 mapexOLD 8846 pmvalg 8851 elpmg 8857 elmapssres 8881 pmss12g 8883 ralxpmap 8910 ixpexg 8936 domssl 9012 ssdomg 9014 fiprc 9059 domunsncan 9086 infensuc 9169 pssnn 9182 ssfi 9187 enp1i 9285 unbnn 9304 fodomfi 9322 fodomfiOLD 9342 fival 9424 fiss 9436 dffi3 9443 hartogslem2 9557 card2on 9568 wdomima2g 9600 unxpwdom2 9602 unxpwdom 9603 harwdom 9605 oemapvali 9698 ackbij1lem11 10243 cofsmo 10283 ssfin4 10324 fin23lem11 10331 ssfin2 10334 ssfin3ds 10344 isfin1-3 10400 hsmex3 10448 axdc2lem 10462 ac6num 10493 ttukeylem1 10523 dmct 10538 ondomon 10577 fpwwe2lem3 10647 fpwwe2lem11 10655 fpwwe2lem12 10656 canthwe 10665 wuncss 10759 genpv 11013 genpdm 11016 hashss 14427 wrdexb 14543 shftfval 15089 o1of2 15629 o1rlimmul 15635 isercolllem2 15682 isstruct2 17168 ressval3d 17267 ressabs 17269 prdsbas 17471 fnmrc 17619 mrcfval 17620 isacs1i 17669 mreacs 17670 isssc 17833 ipolerval 18542 ress0g 18740 sylow2a 19600 islbs3 21116 toponsspwpw 22860 basdif0 22891 tgval 22893 eltg 22895 eltg2 22896 tgss 22906 basgen2 22927 2basgen 22928 bastop1 22931 topnex 22934 resttopon 23099 restabs 23103 restcld 23110 restfpw 23117 restcls 23119 restntr 23120 ordtbas2 23129 ordtbas 23130 lmfval 23170 cnrest 23223 cmpcov 23327 cmpsublem 23337 cmpsub 23338 2ndcomap 23396 islocfin 23455 txss12 23543 ptrescn 23577 trfbas2 23781 trfbas 23782 isfildlem 23795 snfbas 23804 trfil1 23824 trfil2 23825 trufil 23848 ssufl 23856 hauspwpwf1 23925 ustval 24141 metrest 24463 cnheibor 24905 metcld2 25259 bcthlem1 25276 mbfimaopn2 25610 0pledm 25626 dvbss 25854 dvreslem 25862 dvres2lem 25863 dvcnp2 25873 dvcnp2OLD 25874 dvaddbr 25892 dvmulbr 25893 dvmulbrOLD 25894 dvcnvrelem2 25975 elply2 26153 plyf 26155 plyss 26156 elplyr 26158 plyeq0lem 26167 plyeq0 26168 plyaddlem 26172 plymullem 26173 dgrlem 26186 coeidlem 26194 ulmcn 26360 pserulm 26383 rabexgfGS 32480 abrexdomjm 32488 aciunf1 32641 indval 32830 ress1r 33229 pcmplfin 33891 metidval 33921 sigagenss 34180 measval 34229 omsfval 34326 omssubaddlem 34331 omssubadd 34332 carsggect 34350 erdsze2lem1 35225 erdsze2lem2 35226 cvxpconn 35264 elmsta 35570 dfon2lem3 35803 altxpexg 35996 ivthALT 36353 filnetlem3 36398 bj-sselpwuni 37068 bj-elpwg 37070 bj-restsnss 37101 bj-restsnss2 37102 bj-restb 37112 bj-restuni2 37116 abrexdom 37754 sdclem2 37766 sdclem1 37767 imaexALTV 38348 brssr 38519 sticksstones4 42162 sticksstones14 42173 pssexg 42277 elrfirn 42718 pwssplit4 43113 hbtlem1 43147 hbtlem7 43149 inaex 44321 rabexgf 45048 dvnprodlem2 45976 qndenserrnbllem 46323 sge0ss 46441 psmeasurelem 46499 caragensplit 46529 omeunile 46534 caragenuncl 46542 omeunle 46545 omeiunlempt 46549 carageniuncllem2 46551 fcdmvafv2v 47265 prprval 47528 mpoexxg2 48313 gsumlsscl 48355 lincellss 48402 incat 49478 |
| Copyright terms: Public domain | W3C validator |