| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3990 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3467 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5301 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3537 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 df-ss 3948 |
| This theorem is referenced by: ssexd 5304 prcssprc 5307 difexg 5309 elpw2g 5313 rabexgOLD 5318 elssabg 5323 abssexg 5362 snexALT 5363 sess1 5630 sess2 5631 riinint 5962 resexg 6025 trsuc 6451 ordsssuc2 6455 mptexg 7223 mptexgf 7224 isofr2 7346 ofres 7698 brrpssg 7727 unexb 7749 unexbOLD 7750 xpexg 7752 abnexg 7758 difex2 7762 uniexr 7765 dmexg 7905 rnexg 7906 resiexg 7916 imaexg 7917 exse2 7921 cnvexg 7928 coexg 7933 fabexgOLD 7943 f1oabexgOLD 7947 resfunexgALT 7954 cofunexg 7955 fnexALT 7957 f1dmex 7963 oprabexd 7982 mpoexxg 8082 suppfnss 8196 tposexg 8247 tz7.48-3 8466 oaabs 8668 erex 8751 mapexOLD 8854 pmvalg 8859 elpmg 8865 elmapssres 8889 pmss12g 8891 ralxpmap 8918 ixpexg 8944 domssl 9020 ssdomg 9022 fiprc 9067 domunsncan 9094 infensuc 9177 pssnn 9190 ssfi 9195 enp1i 9295 unbnn 9314 fodomfi 9332 fodomfiOLD 9352 fival 9434 fiss 9446 dffi3 9453 hartogslem2 9565 card2on 9576 wdomima2g 9608 unxpwdom2 9610 unxpwdom 9611 harwdom 9613 oemapvali 9706 ackbij1lem11 10251 cofsmo 10291 ssfin4 10332 fin23lem11 10339 ssfin2 10342 ssfin3ds 10352 isfin1-3 10408 hsmex3 10456 axdc2lem 10470 ac6num 10501 ttukeylem1 10531 dmct 10546 ondomon 10585 fpwwe2lem3 10655 fpwwe2lem11 10663 fpwwe2lem12 10664 canthwe 10673 wuncss 10767 genpv 11021 genpdm 11024 hashss 14431 wrdexb 14546 shftfval 15092 o1of2 15632 o1rlimmul 15638 isercolllem2 15685 isstruct2 17169 ressval3d 17270 ressabs 17272 prdsbas 17474 fnmrc 17622 mrcfval 17623 isacs1i 17672 mreacs 17673 isssc 17836 ipolerval 18547 ress0g 18745 sylow2a 19606 islbs3 21126 toponsspwpw 22877 basdif0 22908 tgval 22910 eltg 22912 eltg2 22913 tgss 22923 basgen2 22944 2basgen 22945 bastop1 22948 topnex 22951 resttopon 23116 restabs 23120 restcld 23127 restfpw 23134 restcls 23136 restntr 23137 ordtbas2 23146 ordtbas 23147 lmfval 23187 cnrest 23240 cmpcov 23344 cmpsublem 23354 cmpsub 23355 2ndcomap 23413 islocfin 23472 txss12 23560 ptrescn 23594 trfbas2 23798 trfbas 23799 isfildlem 23812 snfbas 23821 trfil1 23841 trfil2 23842 trufil 23865 ssufl 23873 hauspwpwf1 23942 ustval 24158 metrest 24482 cnheibor 24924 metcld2 25278 bcthlem1 25295 mbfimaopn2 25629 0pledm 25645 dvbss 25873 dvreslem 25881 dvres2lem 25882 dvcnp2 25892 dvcnp2OLD 25893 dvaddbr 25911 dvmulbr 25912 dvmulbrOLD 25913 dvcnvrelem2 25994 elply2 26172 plyf 26174 plyss 26175 elplyr 26177 plyeq0lem 26186 plyeq0 26187 plyaddlem 26191 plymullem 26192 dgrlem 26205 coeidlem 26213 ulmcn 26379 pserulm 26402 rabexgfGS 32447 abrexdomjm 32455 aciunf1 32609 indval 32783 ress1r 33182 pcmplfin 33834 metidval 33864 sigagenss 34125 measval 34174 omsfval 34271 omssubaddlem 34276 omssubadd 34277 carsggect 34295 erdsze2lem1 35183 erdsze2lem2 35184 cvxpconn 35222 elmsta 35528 dfon2lem3 35761 altxpexg 35954 ivthALT 36311 filnetlem3 36356 bj-sselpwuni 37026 bj-elpwg 37028 bj-restsnss 37059 bj-restsnss2 37060 bj-restb 37070 bj-restuni2 37074 abrexdom 37712 sdclem2 37724 sdclem1 37725 imaexALTV 38306 brssr 38477 sticksstones4 42125 sticksstones14 42136 pssexg 42240 elrfirn 42684 pwssplit4 43079 hbtlem1 43113 hbtlem7 43115 inaex 44288 rabexgf 45001 dvnprodlem2 45934 qndenserrnbllem 46281 sge0ss 46399 psmeasurelem 46457 caragensplit 46487 omeunile 46492 caragenuncl 46500 omeunle 46503 omeiunlempt 46507 carageniuncllem2 46509 fcdmvafv2v 47221 prprval 47474 mpoexxg2 48227 gsumlsscl 48269 lincellss 48316 |
| Copyright terms: Public domain | W3C validator |