| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3970 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3448 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5271 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3517 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: ssexd 5274 prcssprc 5277 difexg 5279 elpw2g 5283 rabexgOLD 5288 elssabg 5293 abssexg 5332 snexALT 5333 sess1 5596 sess2 5597 riinint 5925 resexg 5988 trsuc 6410 ordsssuc2 6414 mptexg 7178 mptexgf 7179 isofr2 7302 ofres 7653 brrpssg 7682 unexb 7704 unexbOLD 7705 xpexg 7707 abnexg 7713 difex2 7717 uniexr 7720 dmexg 7858 rnexg 7859 resiexg 7869 imaexg 7870 exse2 7874 cnvexg 7881 coexg 7886 fabexgOLD 7896 f1oabexgOLD 7900 resfunexgALT 7907 cofunexg 7908 fnexALT 7910 f1dmex 7916 oprabexd 7934 mpoexxg 8034 suppfnss 8146 tposexg 8197 tz7.48-3 8390 oaabs 8590 erex 8673 mapexOLD 8783 pmvalg 8788 elpmg 8794 elmapssres 8818 pmss12g 8820 ralxpmap 8847 ixpexg 8873 domssl 8947 ssdomg 8949 fiprc 8994 domunsncan 9019 infensuc 9097 pssnn 9110 ssfi 9115 enp1i 9201 unbnn 9220 fodomfi 9238 fodomfiOLD 9258 fival 9340 fiss 9352 dffi3 9359 hartogslem2 9473 card2on 9484 wdomima2g 9516 unxpwdom2 9518 unxpwdom 9519 harwdom 9521 oemapvali 9616 ackbij1lem11 10161 cofsmo 10201 ssfin4 10242 fin23lem11 10249 ssfin2 10252 ssfin3ds 10262 isfin1-3 10318 hsmex3 10366 axdc2lem 10380 ac6num 10411 ttukeylem1 10441 dmct 10456 ondomon 10495 fpwwe2lem3 10565 fpwwe2lem11 10573 fpwwe2lem12 10574 canthwe 10583 wuncss 10677 genpv 10931 genpdm 10934 hashss 14353 wrdexb 14469 shftfval 15014 o1of2 15557 o1rlimmul 15563 isercolllem2 15610 isstruct2 17097 ressval3d 17194 ressabs 17196 prdsbas 17398 fnmrc 17550 mrcfval 17551 isacs1i 17600 mreacs 17601 isssc 17764 ipolerval 18475 ress0g 18673 sylow2a 19535 islbs3 21099 toponsspwpw 22844 basdif0 22875 tgval 22877 eltg 22879 eltg2 22880 tgss 22890 basgen2 22911 2basgen 22912 bastop1 22915 topnex 22918 resttopon 23083 restabs 23087 restcld 23094 restfpw 23101 restcls 23103 restntr 23104 ordtbas2 23113 ordtbas 23114 lmfval 23154 cnrest 23207 cmpcov 23311 cmpsublem 23321 cmpsub 23322 2ndcomap 23380 islocfin 23439 txss12 23527 ptrescn 23561 trfbas2 23765 trfbas 23766 isfildlem 23779 snfbas 23788 trfil1 23808 trfil2 23809 trufil 23832 ssufl 23840 hauspwpwf1 23909 ustval 24125 metrest 24447 cnheibor 24889 metcld2 25242 bcthlem1 25259 mbfimaopn2 25593 0pledm 25609 dvbss 25837 dvreslem 25845 dvres2lem 25846 dvcnp2 25856 dvcnp2OLD 25857 dvaddbr 25875 dvmulbr 25876 dvmulbrOLD 25877 dvcnvrelem2 25958 elply2 26136 plyf 26138 plyss 26139 elplyr 26141 plyeq0lem 26150 plyeq0 26151 plyaddlem 26155 plymullem 26156 dgrlem 26169 coeidlem 26177 ulmcn 26343 pserulm 26366 rabexgfGS 32480 abrexdomjm 32488 aciunf1 32639 indval 32828 ress1r 33203 pcmplfin 33845 metidval 33875 sigagenss 34134 measval 34183 omsfval 34280 omssubaddlem 34285 omssubadd 34286 carsggect 34304 erdsze2lem1 35185 erdsze2lem2 35186 cvxpconn 35224 elmsta 35530 dfon2lem3 35768 altxpexg 35961 ivthALT 36318 filnetlem3 36363 bj-sselpwuni 37033 bj-elpwg 37035 bj-restsnss 37066 bj-restsnss2 37067 bj-restb 37077 bj-restuni2 37081 abrexdom 37719 sdclem2 37731 sdclem1 37732 brssr 38487 sticksstones4 42132 sticksstones14 42143 pssexg 42209 elrfirn 42678 pwssplit4 43073 hbtlem1 43107 hbtlem7 43109 inaex 44281 rabexgf 45013 dvnprodlem2 45940 qndenserrnbllem 46287 sge0ss 46405 psmeasurelem 46463 caragensplit 46493 omeunile 46498 caragenuncl 46506 omeunle 46509 omeiunlempt 46513 carageniuncllem2 46515 fcdmvafv2v 47232 prprval 47510 mpoexxg2 48321 gsumlsscl 48363 lincellss 48410 incat 49585 |
| Copyright terms: Public domain | W3C validator |