Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3943 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5240 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 3495 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssexd 5243 prcssprc 5244 difexg 5246 rabexg 5250 elssabg 5255 elpw2g 5263 abssexg 5300 snexALT 5301 sess1 5548 sess2 5549 riinint 5866 resexg 5926 trsuc 6335 ordsssuc2 6339 mptexg 7079 mptexgf 7080 isofr2 7195 ofres 7530 brrpssg 7556 unexb 7576 xpexg 7578 abnexg 7584 difex2 7588 uniexr 7591 dmexg 7724 rnexg 7725 resiexg 7735 imaexg 7736 exse2 7738 cnvexg 7745 coexg 7750 fabexg 7755 f1oabexg 7757 resfunexgALT 7764 cofunexg 7765 fnexALT 7767 f1dmex 7773 oprabexd 7791 mpoexxg 7889 suppfnss 7976 tposexg 8027 tz7.48-3 8245 oaabs 8438 erex 8480 mapex 8579 pmvalg 8584 elpmg 8589 elmapssres 8613 pmss12g 8615 ralxpmap 8642 ixpexg 8668 ssdomg 8741 fiprc 8789 domunsncan 8812 infensuc 8891 pssnn 8913 ssfi 8918 pssnnOLD 8969 unbnn 9000 fodomfi 9022 fival 9101 fiss 9113 dffi3 9120 hartogslem2 9232 card2on 9243 wdomima2g 9275 unxpwdom2 9277 unxpwdom 9278 harwdom 9280 oemapvali 9372 ackbij1lem11 9917 cofsmo 9956 ssfin4 9997 fin23lem11 10004 ssfin2 10007 ssfin3ds 10017 isfin1-3 10073 hsmex3 10121 axdc2lem 10135 ac6num 10166 ttukeylem1 10196 dmct 10211 ondomon 10250 fpwwe2lem3 10320 fpwwe2lem11 10328 fpwwe2lem12 10329 canthwe 10338 wuncss 10432 genpv 10686 genpdm 10689 hashss 14052 hashf1lem1OLD 14097 wrdexb 14156 shftfval 14709 o1of2 15250 o1rlimmul 15256 isercolllem2 15305 isstruct2 16778 ressval3d 16882 ressval3dOLD 16883 ressabs 16885 prdsbas 17085 fnmrc 17233 mrcfval 17234 isacs1i 17283 mreacs 17284 isssc 17449 ipolerval 18165 ress0g 18328 sylow2a 19139 islbs3 20332 toponsspwpw 21979 basdif0 22011 tgval 22013 eltg 22015 eltg2 22016 tgss 22026 basgen2 22047 2basgen 22048 bastop1 22051 topnex 22054 resttopon 22220 restabs 22224 restcld 22231 restfpw 22238 restcls 22240 restntr 22241 ordtbas2 22250 ordtbas 22251 lmfval 22291 cnrest 22344 cmpcov 22448 cmpsublem 22458 cmpsub 22459 2ndcomap 22517 islocfin 22576 txss12 22664 ptrescn 22698 trfbas2 22902 trfbas 22903 isfildlem 22916 snfbas 22925 trfil1 22945 trfil2 22946 trufil 22969 ssufl 22977 hauspwpwf1 23046 ustval 23262 metrest 23586 cnheibor 24024 metcld2 24376 bcthlem1 24393 mbfimaopn2 24726 0pledm 24742 dvbss 24970 dvreslem 24978 dvres2lem 24979 dvcnp2 24989 dvaddbr 25007 dvmulbr 25008 dvcnvrelem2 25087 elply2 25262 plyf 25264 plyss 25265 elplyr 25267 plyeq0lem 25276 plyeq0 25277 plyaddlem 25281 plymullem 25282 dgrlem 25295 coeidlem 25303 ulmcn 25463 pserulm 25486 rabexgfGS 30747 abrexdomjm 30753 aciunf1 30902 ress1r 31388 pcmplfin 31712 metidval 31742 indval 31881 sigagenss 32017 measval 32066 omsfval 32161 omssubaddlem 32166 omssubadd 32167 carsggect 32185 erdsze2lem1 33065 erdsze2lem2 33066 cvxpconn 33104 elmsta 33410 dfon2lem3 33667 altxpexg 34207 ivthALT 34451 filnetlem3 34496 bj-sselpwuni 35150 bj-elpwg 35152 bj-restsnss 35181 bj-restsnss2 35182 bj-restb 35192 bj-restuni2 35196 abrexdom 35815 sdclem2 35827 sdclem1 35828 imaexALTV 36392 brssr 36546 sticksstones4 40033 sticksstones14 40044 pssexg 40127 elrfirn 40433 pwssplit4 40830 hbtlem1 40864 hbtlem7 40866 inaex 41804 rabexgf 42456 dvnprodlem1 43377 dvnprodlem2 43378 qndenserrnbllem 43725 sge0ss 43840 psmeasurelem 43898 caragensplit 43928 omeunile 43933 caragenuncl 43941 omeunle 43944 omeiunlempt 43948 carageniuncllem2 43950 frnvafv2v 44615 prprval 44854 mpoexxg2 45561 gsumlsscl 45607 lincellss 45655 |
Copyright terms: Public domain | W3C validator |