| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3956 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5257 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3507 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: ssexd 5260 prcssprc 5263 difexg 5265 elpw2g 5269 rabexgOLD 5274 elssabg 5279 abssexg 5318 snexALT 5319 sess1 5579 sess2 5580 riinint 5910 resexg 5975 trsuc 6395 ordsssuc2 6399 mptexg 7155 mptexgf 7156 isofr2 7278 ofres 7629 brrpssg 7658 unexb 7680 unexbOLD 7681 xpexg 7683 abnexg 7689 difex2 7693 uniexr 7696 dmexg 7831 rnexg 7832 resiexg 7842 imaexg 7843 exse2 7847 cnvexg 7854 coexg 7859 fabexgOLD 7869 f1oabexgOLD 7873 resfunexgALT 7880 cofunexg 7881 fnexALT 7883 f1dmex 7889 oprabexd 7907 mpoexxg 8007 suppfnss 8119 tposexg 8170 tz7.48-3 8363 oaabs 8563 erex 8646 mapexOLD 8756 pmvalg 8761 elpmg 8767 elmapssres 8791 pmss12g 8793 ralxpmap 8820 ixpexg 8846 domssl 8920 ssdomg 8922 fiprc 8966 domunsncan 8990 infensuc 9068 pssnn 9078 ssfi 9082 enp1i 9163 unbnn 9180 fodomfi 9196 fodomfiOLD 9214 fival 9296 fiss 9308 dffi3 9315 hartogslem2 9429 card2on 9440 wdomima2g 9472 unxpwdom2 9474 unxpwdom 9475 harwdom 9477 oemapvali 9574 ackbij1lem11 10120 cofsmo 10160 ssfin4 10201 fin23lem11 10208 ssfin2 10211 ssfin3ds 10221 isfin1-3 10277 hsmex3 10325 axdc2lem 10339 ac6num 10370 ttukeylem1 10400 dmct 10415 ondomon 10454 fpwwe2lem3 10524 fpwwe2lem11 10532 fpwwe2lem12 10533 canthwe 10542 wuncss 10636 genpv 10890 genpdm 10893 hashss 14316 wrdexb 14432 shftfval 14977 o1of2 15520 o1rlimmul 15526 isercolllem2 15573 isstruct2 17060 ressval3d 17157 ressabs 17159 prdsbas 17361 fnmrc 17513 mrcfval 17514 isacs1i 17563 mreacs 17564 isssc 17727 ipolerval 18438 chnexg 18524 ress0g 18670 sylow2a 19531 islbs3 21092 toponsspwpw 22837 basdif0 22868 tgval 22870 eltg 22872 eltg2 22873 tgss 22883 basgen2 22904 2basgen 22905 bastop1 22908 topnex 22911 resttopon 23076 restabs 23080 restcld 23087 restfpw 23094 restcls 23096 restntr 23097 ordtbas2 23106 ordtbas 23107 lmfval 23147 cnrest 23200 cmpcov 23304 cmpsublem 23314 cmpsub 23315 2ndcomap 23373 islocfin 23432 txss12 23520 ptrescn 23554 trfbas2 23758 trfbas 23759 isfildlem 23772 snfbas 23781 trfil1 23801 trfil2 23802 trufil 23825 ssufl 23833 hauspwpwf1 23902 ustval 24118 metrest 24439 cnheibor 24881 metcld2 25234 bcthlem1 25251 mbfimaopn2 25585 0pledm 25601 dvbss 25829 dvreslem 25837 dvres2lem 25838 dvcnp2 25848 dvcnp2OLD 25849 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvcnvrelem2 25950 elply2 26128 plyf 26130 plyss 26131 elplyr 26133 plyeq0lem 26142 plyeq0 26143 plyaddlem 26147 plymullem 26148 dgrlem 26161 coeidlem 26169 ulmcn 26335 pserulm 26358 rabexgfGS 32479 abrexdomjm 32487 aciunf1 32645 indval 32834 ress1r 33201 pcmplfin 33873 metidval 33903 sigagenss 34162 measval 34211 omsfval 34307 omssubaddlem 34312 omssubadd 34313 carsggect 34331 fineqvnttrclse 35144 erdsze2lem1 35247 erdsze2lem2 35248 cvxpconn 35286 elmsta 35592 dfon2lem3 35827 altxpexg 36022 ivthALT 36379 filnetlem3 36424 bj-sselpwuni 37094 bj-elpwg 37096 bj-restsnss 37127 bj-restsnss2 37128 bj-restb 37138 bj-restuni2 37142 abrexdom 37769 sdclem2 37781 sdclem1 37782 brssr 38592 sticksstones4 42241 sticksstones14 42252 pssexg 42318 elrfirn 42787 pwssplit4 43181 hbtlem1 43215 hbtlem7 43217 inaex 44389 rabexgf 45120 dvnprodlem2 46044 qndenserrnbllem 46391 sge0ss 46509 psmeasurelem 46567 caragensplit 46597 omeunile 46602 caragenuncl 46610 omeunle 46613 omeiunlempt 46617 carageniuncllem2 46619 fcdmvafv2v 47335 prprval 47613 mpoexxg2 48437 gsumlsscl 48479 lincellss 48526 incat 49701 |
| Copyright terms: Public domain | W3C validator |