![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4021 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 3481 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5326 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 3553 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 |
This theorem is referenced by: ssexd 5329 prcssprc 5332 difexg 5334 elpw2g 5338 rabexgOLD 5343 elssabg 5348 abssexg 5387 snexALT 5388 sess1 5653 sess2 5654 riinint 5984 resexg 6046 trsuc 6472 ordsssuc2 6476 mptexg 7240 mptexgf 7241 isofr2 7363 ofres 7715 brrpssg 7743 unexb 7765 unexbOLD 7766 xpexg 7768 abnexg 7774 difex2 7778 uniexr 7781 dmexg 7923 rnexg 7924 resiexg 7934 imaexg 7935 exse2 7939 cnvexg 7946 coexg 7951 fabexgOLD 7959 f1oabexgOLD 7963 resfunexgALT 7970 cofunexg 7971 fnexALT 7973 f1dmex 7979 oprabexd 7998 mpoexxg 8098 suppfnss 8212 tposexg 8263 tz7.48-3 8482 oaabs 8684 erex 8767 mapexOLD 8870 pmvalg 8875 elpmg 8881 elmapssres 8905 pmss12g 8907 ralxpmap 8934 ixpexg 8960 domssl 9036 ssdomg 9038 fiprc 9083 domunsncan 9110 infensuc 9193 pssnn 9206 ssfi 9211 enp1i 9310 unbnn 9329 fodomfi 9347 fodomfiOLD 9367 fival 9449 fiss 9461 dffi3 9468 hartogslem2 9580 card2on 9591 wdomima2g 9623 unxpwdom2 9625 unxpwdom 9626 harwdom 9628 oemapvali 9721 ackbij1lem11 10266 cofsmo 10306 ssfin4 10347 fin23lem11 10354 ssfin2 10357 ssfin3ds 10367 isfin1-3 10423 hsmex3 10471 axdc2lem 10485 ac6num 10516 ttukeylem1 10546 dmct 10561 ondomon 10600 fpwwe2lem3 10670 fpwwe2lem11 10678 fpwwe2lem12 10679 canthwe 10688 wuncss 10782 genpv 11036 genpdm 11039 hashss 14444 wrdexb 14559 shftfval 15105 o1of2 15645 o1rlimmul 15651 isercolllem2 15698 isstruct2 17182 ressval3d 17291 ressval3dOLD 17292 ressabs 17294 prdsbas 17503 fnmrc 17651 mrcfval 17652 isacs1i 17701 mreacs 17702 isssc 17867 ipolerval 18589 ress0g 18787 sylow2a 19651 islbs3 21174 toponsspwpw 22943 basdif0 22975 tgval 22977 eltg 22979 eltg2 22980 tgss 22990 basgen2 23011 2basgen 23012 bastop1 23015 topnex 23018 resttopon 23184 restabs 23188 restcld 23195 restfpw 23202 restcls 23204 restntr 23205 ordtbas2 23214 ordtbas 23215 lmfval 23255 cnrest 23308 cmpcov 23412 cmpsublem 23422 cmpsub 23423 2ndcomap 23481 islocfin 23540 txss12 23628 ptrescn 23662 trfbas2 23866 trfbas 23867 isfildlem 23880 snfbas 23889 trfil1 23909 trfil2 23910 trufil 23933 ssufl 23941 hauspwpwf1 24010 ustval 24226 metrest 24552 cnheibor 25000 metcld2 25354 bcthlem1 25371 mbfimaopn2 25705 0pledm 25721 dvbss 25950 dvreslem 25958 dvres2lem 25959 dvcnp2 25969 dvcnp2OLD 25970 dvaddbr 25988 dvmulbr 25989 dvmulbrOLD 25990 dvcnvrelem2 26071 elply2 26249 plyf 26251 plyss 26252 elplyr 26254 plyeq0lem 26263 plyeq0 26264 plyaddlem 26268 plymullem 26269 dgrlem 26282 coeidlem 26290 ulmcn 26456 pserulm 26479 rabexgfGS 32526 abrexdomjm 32534 aciunf1 32679 ress1r 33223 pcmplfin 33820 metidval 33850 indval 33993 sigagenss 34129 measval 34178 omsfval 34275 omssubaddlem 34280 omssubadd 34281 carsggect 34299 erdsze2lem1 35187 erdsze2lem2 35188 cvxpconn 35226 elmsta 35532 dfon2lem3 35766 altxpexg 35959 ivthALT 36317 filnetlem3 36362 bj-sselpwuni 37032 bj-elpwg 37034 bj-restsnss 37065 bj-restsnss2 37066 bj-restb 37076 bj-restuni2 37080 abrexdom 37716 sdclem2 37728 sdclem1 37729 imaexALTV 38311 brssr 38482 sticksstones4 42130 sticksstones14 42141 pssexg 42243 elrfirn 42682 pwssplit4 43077 hbtlem1 43111 hbtlem7 43113 inaex 44292 rabexgf 44961 dvnprodlem2 45902 qndenserrnbllem 46249 sge0ss 46367 psmeasurelem 46425 caragensplit 46455 omeunile 46460 caragenuncl 46468 omeunle 46471 omeiunlempt 46475 carageniuncllem2 46477 fcdmvafv2v 47185 prprval 47438 mpoexxg2 48182 gsumlsscl 48224 lincellss 48271 |
Copyright terms: Public domain | W3C validator |