![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4035 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5339 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 3566 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: ssexd 5342 prcssprc 5345 difexg 5347 elpw2g 5351 rabexgOLD 5356 elssabg 5361 abssexg 5400 snexALT 5401 sess1 5665 sess2 5666 riinint 5994 resexg 6056 trsuc 6482 ordsssuc2 6486 mptexg 7258 mptexgf 7259 isofr2 7380 ofres 7733 brrpssg 7760 unexb 7782 unexbOLD 7783 xpexg 7785 abnexg 7791 difex2 7795 uniexr 7798 dmexg 7941 rnexg 7942 resiexg 7952 imaexg 7953 exse2 7957 cnvexg 7964 coexg 7969 fabexgOLD 7977 f1oabexgOLD 7981 resfunexgALT 7988 cofunexg 7989 fnexALT 7991 f1dmex 7997 oprabexd 8016 mpoexxg 8116 suppfnss 8230 tposexg 8281 tz7.48-3 8500 oaabs 8704 erex 8787 mapexOLD 8890 pmvalg 8895 elpmg 8901 elmapssres 8925 pmss12g 8927 ralxpmap 8954 ixpexg 8980 domssl 9058 ssdomg 9060 fiprc 9111 domunsncan 9138 infensuc 9221 pssnn 9234 ssfi 9240 enp1i 9341 unbnn 9360 fodomfi 9378 fodomfiOLD 9398 fival 9481 fiss 9493 dffi3 9500 hartogslem2 9612 card2on 9623 wdomima2g 9655 unxpwdom2 9657 unxpwdom 9658 harwdom 9660 oemapvali 9753 ackbij1lem11 10298 cofsmo 10338 ssfin4 10379 fin23lem11 10386 ssfin2 10389 ssfin3ds 10399 isfin1-3 10455 hsmex3 10503 axdc2lem 10517 ac6num 10548 ttukeylem1 10578 dmct 10593 ondomon 10632 fpwwe2lem3 10702 fpwwe2lem11 10710 fpwwe2lem12 10711 canthwe 10720 wuncss 10814 genpv 11068 genpdm 11071 hashss 14458 wrdexb 14573 shftfval 15119 o1of2 15659 o1rlimmul 15665 isercolllem2 15714 isstruct2 17196 ressval3d 17305 ressval3dOLD 17306 ressabs 17308 prdsbas 17517 fnmrc 17665 mrcfval 17666 isacs1i 17715 mreacs 17716 isssc 17881 ipolerval 18602 ress0g 18800 sylow2a 19661 islbs3 21180 toponsspwpw 22949 basdif0 22981 tgval 22983 eltg 22985 eltg2 22986 tgss 22996 basgen2 23017 2basgen 23018 bastop1 23021 topnex 23024 resttopon 23190 restabs 23194 restcld 23201 restfpw 23208 restcls 23210 restntr 23211 ordtbas2 23220 ordtbas 23221 lmfval 23261 cnrest 23314 cmpcov 23418 cmpsublem 23428 cmpsub 23429 2ndcomap 23487 islocfin 23546 txss12 23634 ptrescn 23668 trfbas2 23872 trfbas 23873 isfildlem 23886 snfbas 23895 trfil1 23915 trfil2 23916 trufil 23939 ssufl 23947 hauspwpwf1 24016 ustval 24232 metrest 24558 cnheibor 25006 metcld2 25360 bcthlem1 25377 mbfimaopn2 25711 0pledm 25727 dvbss 25956 dvreslem 25964 dvres2lem 25965 dvcnp2 25975 dvcnp2OLD 25976 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcnvrelem2 26077 elply2 26255 plyf 26257 plyss 26258 elplyr 26260 plyeq0lem 26269 plyeq0 26270 plyaddlem 26274 plymullem 26275 dgrlem 26288 coeidlem 26296 ulmcn 26460 pserulm 26483 rabexgfGS 32527 abrexdomjm 32535 aciunf1 32681 ress1r 33214 pcmplfin 33806 metidval 33836 indval 33977 sigagenss 34113 measval 34162 omsfval 34259 omssubaddlem 34264 omssubadd 34265 carsggect 34283 erdsze2lem1 35171 erdsze2lem2 35172 cvxpconn 35210 elmsta 35516 dfon2lem3 35749 altxpexg 35942 ivthALT 36301 filnetlem3 36346 bj-sselpwuni 37016 bj-elpwg 37018 bj-restsnss 37049 bj-restsnss2 37050 bj-restb 37060 bj-restuni2 37064 abrexdom 37690 sdclem2 37702 sdclem1 37703 imaexALTV 38286 brssr 38457 sticksstones4 42106 sticksstones14 42117 pssexg 42219 elrfirn 42651 pwssplit4 43046 hbtlem1 43080 hbtlem7 43082 inaex 44266 rabexgf 44924 dvnprodlem1 45867 dvnprodlem2 45868 qndenserrnbllem 46215 sge0ss 46333 psmeasurelem 46391 caragensplit 46421 omeunile 46426 caragenuncl 46434 omeunle 46437 omeiunlempt 46441 carageniuncllem2 46443 fcdmvafv2v 47151 prprval 47388 mpoexxg2 48062 gsumlsscl 48108 lincellss 48155 |
Copyright terms: Public domain | W3C validator |