| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3973 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5276 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 3520 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: ssexd 5279 prcssprc 5282 difexg 5284 elpw2g 5288 rabexgOLD 5293 elssabg 5298 abssexg 5337 snexALT 5338 sess1 5603 sess2 5604 riinint 5935 resexg 5998 trsuc 6421 ordsssuc2 6425 mptexg 7195 mptexgf 7196 isofr2 7319 ofres 7672 brrpssg 7701 unexb 7723 unexbOLD 7724 xpexg 7726 abnexg 7732 difex2 7736 uniexr 7739 dmexg 7877 rnexg 7878 resiexg 7888 imaexg 7889 exse2 7893 cnvexg 7900 coexg 7905 fabexgOLD 7915 f1oabexgOLD 7919 resfunexgALT 7926 cofunexg 7927 fnexALT 7929 f1dmex 7935 oprabexd 7954 mpoexxg 8054 suppfnss 8168 tposexg 8219 tz7.48-3 8412 oaabs 8612 erex 8695 mapexOLD 8805 pmvalg 8810 elpmg 8816 elmapssres 8840 pmss12g 8842 ralxpmap 8869 ixpexg 8895 domssl 8969 ssdomg 8971 fiprc 9016 domunsncan 9041 infensuc 9119 pssnn 9132 ssfi 9137 enp1i 9224 unbnn 9243 fodomfi 9261 fodomfiOLD 9281 fival 9363 fiss 9375 dffi3 9382 hartogslem2 9496 card2on 9507 wdomima2g 9539 unxpwdom2 9541 unxpwdom 9542 harwdom 9544 oemapvali 9637 ackbij1lem11 10182 cofsmo 10222 ssfin4 10263 fin23lem11 10270 ssfin2 10273 ssfin3ds 10283 isfin1-3 10339 hsmex3 10387 axdc2lem 10401 ac6num 10432 ttukeylem1 10462 dmct 10477 ondomon 10516 fpwwe2lem3 10586 fpwwe2lem11 10594 fpwwe2lem12 10595 canthwe 10604 wuncss 10698 genpv 10952 genpdm 10955 hashss 14374 wrdexb 14490 shftfval 15036 o1of2 15579 o1rlimmul 15585 isercolllem2 15632 isstruct2 17119 ressval3d 17216 ressabs 17218 prdsbas 17420 fnmrc 17568 mrcfval 17569 isacs1i 17618 mreacs 17619 isssc 17782 ipolerval 18491 ress0g 18689 sylow2a 19549 islbs3 21065 toponsspwpw 22809 basdif0 22840 tgval 22842 eltg 22844 eltg2 22845 tgss 22855 basgen2 22876 2basgen 22877 bastop1 22880 topnex 22883 resttopon 23048 restabs 23052 restcld 23059 restfpw 23066 restcls 23068 restntr 23069 ordtbas2 23078 ordtbas 23079 lmfval 23119 cnrest 23172 cmpcov 23276 cmpsublem 23286 cmpsub 23287 2ndcomap 23345 islocfin 23404 txss12 23492 ptrescn 23526 trfbas2 23730 trfbas 23731 isfildlem 23744 snfbas 23753 trfil1 23773 trfil2 23774 trufil 23797 ssufl 23805 hauspwpwf1 23874 ustval 24090 metrest 24412 cnheibor 24854 metcld2 25207 bcthlem1 25224 mbfimaopn2 25558 0pledm 25574 dvbss 25802 dvreslem 25810 dvres2lem 25811 dvcnp2 25821 dvcnp2OLD 25822 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcnvrelem2 25923 elply2 26101 plyf 26103 plyss 26104 elplyr 26106 plyeq0lem 26115 plyeq0 26116 plyaddlem 26120 plymullem 26121 dgrlem 26134 coeidlem 26142 ulmcn 26308 pserulm 26331 rabexgfGS 32428 abrexdomjm 32436 aciunf1 32587 indval 32776 ress1r 33185 pcmplfin 33850 metidval 33880 sigagenss 34139 measval 34188 omsfval 34285 omssubaddlem 34290 omssubadd 34291 carsggect 34309 erdsze2lem1 35190 erdsze2lem2 35191 cvxpconn 35229 elmsta 35535 dfon2lem3 35773 altxpexg 35966 ivthALT 36323 filnetlem3 36368 bj-sselpwuni 37038 bj-elpwg 37040 bj-restsnss 37071 bj-restsnss2 37072 bj-restb 37082 bj-restuni2 37086 abrexdom 37724 sdclem2 37736 sdclem1 37737 brssr 38492 sticksstones4 42137 sticksstones14 42148 pssexg 42214 elrfirn 42683 pwssplit4 43078 hbtlem1 43112 hbtlem7 43114 inaex 44286 rabexgf 45018 dvnprodlem2 45945 qndenserrnbllem 46292 sge0ss 46410 psmeasurelem 46468 caragensplit 46498 omeunile 46503 caragenuncl 46511 omeunle 46514 omeiunlempt 46518 carageniuncllem2 46520 fcdmvafv2v 47237 prprval 47515 mpoexxg2 48326 gsumlsscl 48368 lincellss 48415 incat 49590 |
| Copyright terms: Public domain | W3C validator |