Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffs Structured version   Visualization version   GIF version

Theorem fpwrelmapffs 32724
Description: Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmap.1 𝐴 ∈ V
fpwrelmap.2 𝐵 ∈ V
fpwrelmap.3 𝑀 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})
fpwrelmapffs.1 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin}
Assertion
Ref Expression
fpwrelmapffs (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem fpwrelmapffs
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fpwrelmap.3 . . . 4 𝑀 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})
2 fpwrelmap.1 . . . . . 6 𝐴 ∈ V
3 fpwrelmap.2 . . . . . 6 𝐵 ∈ V
42, 3, 1fpwrelmap 32723 . . . . 5 𝑀:(𝒫 𝐵m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵)
54a1i 11 . . . 4 (⊤ → 𝑀:(𝒫 𝐵m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵))
6 simpl 482 . . . . . . 7 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → 𝑓 ∈ (𝒫 𝐵m 𝐴))
73pwex 5320 . . . . . . . 8 𝒫 𝐵 ∈ V
87, 2elmap 8801 . . . . . . 7 (𝑓 ∈ (𝒫 𝐵m 𝐴) ↔ 𝑓:𝐴⟶𝒫 𝐵)
96, 8sylib 218 . . . . . 6 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → 𝑓:𝐴⟶𝒫 𝐵)
10 simpr 484 . . . . . 6 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})
112, 3, 9, 10fpwrelmapffslem 32722 . . . . 5 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → (𝑟 ∈ Fin ↔ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)))
12113adant1 1130 . . . 4 ((⊤ ∧ 𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → (𝑟 ∈ Fin ↔ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)))
131, 5, 12f1oresrab 7066 . . 3 (⊤ → (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})
1413mptru 1548 . 2 (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}
15 fpwrelmapffs.1 . . . . 5 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin}
162, 7maprnin 32721 . . . . . 6 ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin}
17 nfcv 2894 . . . . . . 7 𝑓((𝒫 𝐵 ∩ Fin) ↑m 𝐴)
18 nfrab1 3415 . . . . . . 7 𝑓{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin}
1917, 18rabeqf 3429 . . . . . 6 (((𝒫 𝐵 ∩ Fin) ↑m 𝐴) = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} → {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin})
2016, 19ax-mp 5 . . . . 5 {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin}
21 rabrab 3419 . . . . 5 {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}
2215, 20, 213eqtri 2758 . . . 4 𝑆 = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}
23 dfin5 3905 . . . 4 (𝒫 (𝐴 × 𝐵) ∩ Fin) = {𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}
24 f1oeq23 6760 . . . 4 ((𝑆 = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)} ∧ (𝒫 (𝐴 × 𝐵) ∩ Fin) = {𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}) → ((𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) ↔ (𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}))
2522, 23, 24mp2an 692 . . 3 ((𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) ↔ (𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})
2622reseq2i 5930 . . . 4 (𝑀𝑆) = (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)})
27 f1oeq1 6757 . . . 4 ((𝑀𝑆) = (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}) → ((𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}))
2826, 27ax-mp 5 . . 3 ((𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})
2925, 28bitr2i 276 . 2 ((𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin))
3014, 29mpbi 230 1 (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  {crab 3395  Vcvv 3436  cin 3896  wss 3897  c0 4282  𝒫 cpw 4549  {copab 5155  cmpt 5174   × cxp 5617  ran crn 5620  cres 5621  wf 6483  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352   supp csupp 8096  m cmap 8756  Fincfn 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10360
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-fin 8879  df-card 9838  df-acn 9841  df-ac 10013
This theorem is referenced by:  eulerpartlem1  34387
  Copyright terms: Public domain W3C validator