Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffs Structured version   Visualization version   GIF version

Theorem fpwrelmapffs 32750
Description: Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmap.1 𝐴 ∈ V
fpwrelmap.2 𝐵 ∈ V
fpwrelmap.3 𝑀 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})
fpwrelmapffs.1 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin}
Assertion
Ref Expression
fpwrelmapffs (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem fpwrelmapffs
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fpwrelmap.3 . . . 4 𝑀 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})
2 fpwrelmap.1 . . . . . 6 𝐴 ∈ V
3 fpwrelmap.2 . . . . . 6 𝐵 ∈ V
42, 3, 1fpwrelmap 32749 . . . . 5 𝑀:(𝒫 𝐵m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵)
54a1i 11 . . . 4 (⊤ → 𝑀:(𝒫 𝐵m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵))
6 simpl 482 . . . . . . 7 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → 𝑓 ∈ (𝒫 𝐵m 𝐴))
73pwex 5398 . . . . . . . 8 𝒫 𝐵 ∈ V
87, 2elmap 8931 . . . . . . 7 (𝑓 ∈ (𝒫 𝐵m 𝐴) ↔ 𝑓:𝐴⟶𝒫 𝐵)
96, 8sylib 218 . . . . . 6 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → 𝑓:𝐴⟶𝒫 𝐵)
10 simpr 484 . . . . . 6 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})
112, 3, 9, 10fpwrelmapffslem 32748 . . . . 5 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → (𝑟 ∈ Fin ↔ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)))
12113adant1 1130 . . . 4 ((⊤ ∧ 𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑟 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}) → (𝑟 ∈ Fin ↔ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)))
131, 5, 12f1oresrab 7163 . . 3 (⊤ → (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})
1413mptru 1544 . 2 (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}
15 fpwrelmapffs.1 . . . . 5 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin}
162, 7maprnin 32747 . . . . . 6 ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin}
17 nfcv 2908 . . . . . . 7 𝑓((𝒫 𝐵 ∩ Fin) ↑m 𝐴)
18 nfrab1 3464 . . . . . . 7 𝑓{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin}
1917, 18rabeqf 3480 . . . . . 6 (((𝒫 𝐵 ∩ Fin) ↑m 𝐴) = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} → {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin})
2016, 19ax-mp 5 . . . . 5 {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin}
21 rabrab 3468 . . . . 5 {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}
2215, 20, 213eqtri 2772 . . . 4 𝑆 = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}
23 dfin5 3984 . . . 4 (𝒫 (𝐴 × 𝐵) ∩ Fin) = {𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}
24 f1oeq23 6855 . . . 4 ((𝑆 = {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)} ∧ (𝒫 (𝐴 × 𝐵) ∩ Fin) = {𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}) → ((𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) ↔ (𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}))
2522, 23, 24mp2an 691 . . 3 ((𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) ↔ (𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})
2622reseq2i 6008 . . . 4 (𝑀𝑆) = (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)})
27 f1oeq1 6852 . . . 4 ((𝑀𝑆) = (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}) → ((𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}))
2826, 27ax-mp 5 . . 3 ((𝑀𝑆):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})
2925, 28bitr2i 276 . 2 ((𝑀 ↾ {𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin))
3014, 29mpbi 230 1 (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {copab 5228  cmpt 5249   × cxp 5698  ran crn 5701  cres 5702  wf 6571  1-1-ontowf1o 6574  cfv 6575  (class class class)co 7450   supp csupp 8203  m cmap 8886  Fincfn 9005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-ac2 10534
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-1o 8524  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-fin 9009  df-card 10010  df-acn 10013  df-ac 10187
This theorem is referenced by:  eulerpartlem1  34334
  Copyright terms: Public domain W3C validator