Step | Hyp | Ref
| Expression |
1 | | fpwrelmap.3 |
. . . 4
⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
2 | | fpwrelmap.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
3 | | fpwrelmap.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
4 | 2, 3, 1 | fpwrelmap 30970 |
. . . . 5
⊢ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) |
5 | 4 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵)) |
6 | | simpl 482 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) |
7 | 3 | pwex 5298 |
. . . . . . . 8
⊢ 𝒫
𝐵 ∈ V |
8 | 7, 2 | elmap 8617 |
. . . . . . 7
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝒫 𝐵) |
9 | 6, 8 | sylib 217 |
. . . . . 6
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓:𝐴⟶𝒫 𝐵) |
10 | | simpr 484 |
. . . . . 6
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
11 | 2, 3, 9, 10 | fpwrelmapffslem 30969 |
. . . . 5
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → (𝑟 ∈ Fin ↔ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin))) |
12 | 11 | 3adant1 1128 |
. . . 4
⊢
((⊤ ∧ 𝑓
∈ (𝒫 𝐵
↑m 𝐴) ∧
𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → (𝑟 ∈ Fin ↔ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin))) |
13 | 1, 5, 12 | f1oresrab 6981 |
. . 3
⊢ (⊤
→ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)}):{𝑓 ∈ (𝒫
𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}) |
14 | 13 | mptru 1546 |
. 2
⊢ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} |
15 | | fpwrelmapffs.1 |
. . . . 5
⊢ 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} |
16 | 2, 7 | maprnin 30968 |
. . . . . 6
⊢
((𝒫 𝐵 ∩
Fin) ↑m 𝐴)
= {𝑓 ∈ (𝒫
𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ Fin} |
17 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑓((𝒫 𝐵 ∩ Fin) ↑m 𝐴) |
18 | | nfrab1 3310 |
. . . . . . 7
⊢
Ⅎ𝑓{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ Fin} |
19 | 17, 18 | rabeqf 3405 |
. . . . . 6
⊢
(((𝒫 𝐵 ∩
Fin) ↑m 𝐴)
= {𝑓 ∈ (𝒫
𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ Fin} → {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin}) |
20 | 16, 19 | ax-mp 5 |
. . . . 5
⊢ {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m
𝐴) ∣ (𝑓 supp ∅) ∈ Fin} =
{𝑓 ∈ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin} |
21 | | rabrab 3305 |
. . . . 5
⊢ {𝑓 ∈ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ Fin} ∣ (𝑓 supp ∅) ∈ Fin} = {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)} |
22 | 15, 20, 21 | 3eqtri 2770 |
. . . 4
⊢ 𝑆 = {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)} |
23 | | dfin5 3891 |
. . . 4
⊢
(𝒫 (𝐴
× 𝐵) ∩ Fin) =
{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} |
24 | | f1oeq23 6691 |
. . . 4
⊢ ((𝑆 = {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)} ∧ (𝒫
(𝐴 × 𝐵) ∩ Fin) = {𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}) → ((𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) ↔ (𝑀 ↾ 𝑆):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})) |
25 | 22, 23, 24 | mp2an 688 |
. . 3
⊢ ((𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) ↔ (𝑀 ↾ 𝑆):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}) |
26 | 22 | reseq2i 5877 |
. . . 4
⊢ (𝑀 ↾ 𝑆) = (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}) |
27 | | f1oeq1 6688 |
. . . 4
⊢ ((𝑀 ↾ 𝑆) = (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}) → ((𝑀 ↾ 𝑆):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin})) |
28 | 26, 27 | ax-mp 5 |
. . 3
⊢ ((𝑀 ↾ 𝑆):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin}) |
29 | 25, 28 | bitr2i 275 |
. 2
⊢ ((𝑀 ↾ {𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈ Fin)}):{𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∣ (ran 𝑓 ⊆ Fin ∧ (𝑓 supp ∅) ∈
Fin)}–1-1-onto→{𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∣ 𝑟 ∈ Fin} ↔ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin)) |
30 | 14, 29 | mpbi 229 |
1
⊢ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) |