MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reqabi Structured version   Visualization version   GIF version

Theorem reqabi 3432
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
reqabi.1 𝐴 = {𝑥𝐵𝜑}
Assertion
Ref Expression
reqabi (𝑥𝐴 ↔ (𝑥𝐵𝜑))

Proof of Theorem reqabi
StepHypRef Expression
1 reqabi.1 . . 3 𝐴 = {𝑥𝐵𝜑}
21eleq2i 2821 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝐵𝜑})
3 rabid 3430 . 2 (𝑥 ∈ {𝑥𝐵𝜑} ↔ (𝑥𝐵𝜑))
42, 3bitri 275 1 (𝑥𝐴 ↔ (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409
This theorem is referenced by:  fvmptss  6983  tfis  7834  nqereu  10889  rpnnen1lem2  12943  rpnnen1lem1  12944  rpnnen1lem3  12945  rpnnen1lem5  12947  qustgpopn  24014  nbusgrf1o0  29303  finsumvtxdg2ssteplem3  29482  frgrwopreglem2  30249  frgrwopreglem5lem  30256  resf1o  32660  elrgspnlem4  33203  nsgqusf1olem2  33392  nsgqusf1olem3  33393  ballotlem2  34487  reprsuc  34613  oddprm2  34653  hgt750lemb  34654  bnj1476  34844  bnj1533  34849  bnj1538  34852  bnj1523  35068  cvmlift2lem12  35308  neibastop2lem  36355  topdifinfindis  37341  topdifinffinlem  37342  stoweidlem24  46029  stoweidlem31  46036  stoweidlem52  46057  stoweidlem54  46059  stoweidlem57  46062  salexct  46339  ovolval5lem3  46659  pimdecfgtioc  46720  pimincfltioc  46721  pimdecfgtioo  46722  pimincfltioo  46723  smfsuplem1  46816  smfsuplem3  46818  smfliminflem  46835  prprsprreu  47524
  Copyright terms: Public domain W3C validator