![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3455 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 |
This theorem is referenced by: fvmptss 7028 tfis 7876 nqereu 10967 rpnnen1lem2 13017 rpnnen1lem1 13018 rpnnen1lem3 13019 rpnnen1lem5 13021 qustgpopn 24144 addsproplem2 28018 sleadd1 28037 negsproplem6 28080 negsid 28088 nbusgrf1o0 29401 finsumvtxdg2ssteplem3 29580 frgrwopreglem2 30342 frgrwopreglem5lem 30349 resf1o 32748 elrgspnlem4 33235 nsgqusf1olem2 33422 nsgqusf1olem3 33423 ballotlem2 34470 reprsuc 34609 oddprm2 34649 hgt750lemb 34650 bnj1476 34840 bnj1533 34845 bnj1538 34848 bnj1523 35064 cvmlift2lem12 35299 neibastop2lem 36343 topdifinfindis 37329 topdifinffinlem 37330 stoweidlem24 45980 stoweidlem31 45987 stoweidlem52 46008 stoweidlem54 46010 stoweidlem57 46013 salexct 46290 ovolval5lem3 46610 pimdecfgtioc 46671 pimincfltioc 46672 pimdecfgtioo 46673 pimincfltioo 46674 smfsuplem1 46767 smfsuplem3 46769 smfliminflem 46786 prprsprreu 47444 |
Copyright terms: Public domain | W3C validator |