| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 3430 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 |
| This theorem is referenced by: fvmptss 6983 tfis 7834 nqereu 10889 rpnnen1lem2 12943 rpnnen1lem1 12944 rpnnen1lem3 12945 rpnnen1lem5 12947 qustgpopn 24014 nbusgrf1o0 29303 finsumvtxdg2ssteplem3 29482 frgrwopreglem2 30249 frgrwopreglem5lem 30256 resf1o 32660 elrgspnlem4 33203 nsgqusf1olem2 33392 nsgqusf1olem3 33393 ballotlem2 34487 reprsuc 34613 oddprm2 34653 hgt750lemb 34654 bnj1476 34844 bnj1533 34849 bnj1538 34852 bnj1523 35068 cvmlift2lem12 35308 neibastop2lem 36355 topdifinfindis 37341 topdifinffinlem 37342 stoweidlem24 46029 stoweidlem31 46036 stoweidlem52 46057 stoweidlem54 46059 stoweidlem57 46062 salexct 46339 ovolval5lem3 46659 pimdecfgtioc 46720 pimincfltioc 46721 pimdecfgtioo 46722 pimincfltioo 46723 smfsuplem1 46816 smfsuplem3 46818 smfliminflem 46835 prprsprreu 47524 |
| Copyright terms: Public domain | W3C validator |