| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 3437 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 |
| This theorem is referenced by: fvmptss 6998 tfis 7850 nqereu 10943 rpnnen1lem2 12993 rpnnen1lem1 12994 rpnnen1lem3 12995 rpnnen1lem5 12997 qustgpopn 24058 nbusgrf1o0 29348 finsumvtxdg2ssteplem3 29527 frgrwopreglem2 30294 frgrwopreglem5lem 30301 resf1o 32707 elrgspnlem4 33240 nsgqusf1olem2 33429 nsgqusf1olem3 33430 ballotlem2 34521 reprsuc 34647 oddprm2 34687 hgt750lemb 34688 bnj1476 34878 bnj1533 34883 bnj1538 34886 bnj1523 35102 cvmlift2lem12 35336 neibastop2lem 36378 topdifinfindis 37364 topdifinffinlem 37365 stoweidlem24 46053 stoweidlem31 46060 stoweidlem52 46081 stoweidlem54 46083 stoweidlem57 46086 salexct 46363 ovolval5lem3 46683 pimdecfgtioc 46744 pimincfltioc 46745 pimdecfgtioo 46746 pimincfltioo 46747 smfsuplem1 46840 smfsuplem3 46842 smfliminflem 46859 prprsprreu 47533 |
| Copyright terms: Public domain | W3C validator |