| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 3418 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 |
| This theorem is referenced by: fvmptss 6946 tfis 7795 nqereu 10842 rpnnen1lem2 12896 rpnnen1lem1 12897 rpnnen1lem3 12898 rpnnen1lem5 12900 qustgpopn 24023 nbusgrf1o0 29332 finsumvtxdg2ssteplem3 29511 frgrwopreglem2 30275 frgrwopreglem5lem 30282 resf1o 32686 elrgspnlem4 33195 nsgqusf1olem2 33361 nsgqusf1olem3 33362 ballotlem2 34456 reprsuc 34582 oddprm2 34622 hgt750lemb 34623 bnj1476 34813 bnj1533 34818 bnj1538 34821 bnj1523 35037 cvmlift2lem12 35286 neibastop2lem 36333 topdifinfindis 37319 topdifinffinlem 37320 stoweidlem24 46006 stoweidlem31 46013 stoweidlem52 46034 stoweidlem54 46036 stoweidlem57 46039 salexct 46316 ovolval5lem3 46636 pimdecfgtioc 46697 pimincfltioc 46698 pimdecfgtioo 46699 pimincfltioo 46700 smfsuplem1 46793 smfsuplem3 46795 smfliminflem 46812 prprsprreu 47504 |
| Copyright terms: Public domain | W3C validator |