| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 3416 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: fvmptss 6941 tfis 7785 nqereu 10817 rpnnen1lem2 12872 rpnnen1lem1 12873 rpnnen1lem3 12874 rpnnen1lem5 12876 qustgpopn 24033 nbusgrf1o0 29345 finsumvtxdg2ssteplem3 29524 frgrwopreglem2 30288 frgrwopreglem5lem 30295 resf1o 32708 elrgspnlem4 33207 nsgqusf1olem2 33374 nsgqusf1olem3 33375 ballotlem2 34497 reprsuc 34623 oddprm2 34663 hgt750lemb 34664 bnj1476 34854 bnj1533 34859 bnj1538 34862 bnj1523 35078 cvmlift2lem12 35346 neibastop2lem 36393 topdifinfindis 37379 topdifinffinlem 37380 stoweidlem24 46061 stoweidlem31 46068 stoweidlem52 46089 stoweidlem54 46091 stoweidlem57 46094 salexct 46371 ovolval5lem3 46691 pimdecfgtioc 46752 pimincfltioc 46753 pimdecfgtioo 46754 pimincfltioo 46755 smfsuplem1 46848 smfsuplem3 46850 smfliminflem 46867 prprsprreu 47549 |
| Copyright terms: Public domain | W3C validator |