![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2824 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3451 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 |
This theorem is referenced by: fvmptss 7010 tfis 7848 nqereu 10930 rpnnen1lem2 12968 rpnnen1lem1 12969 rpnnen1lem3 12970 rpnnen1lem5 12972 qustgpopn 23945 addsproplem2 27802 sleadd1 27821 negsproplem6 27860 negsid 27868 nbusgrf1o0 29061 finsumvtxdg2ssteplem3 29239 frgrwopreglem2 30001 frgrwopreglem5lem 30008 resf1o 32390 nsgqusf1olem2 32967 nsgqusf1olem3 32968 ballotlem2 33953 reprsuc 34093 oddprm2 34133 hgt750lemb 34134 bnj1476 34324 bnj1533 34329 bnj1538 34332 bnj1523 34548 cvmlift2lem12 34771 neibastop2lem 35712 topdifinfindis 36694 topdifinffinlem 36695 stoweidlem24 45202 stoweidlem31 45209 stoweidlem52 45230 stoweidlem54 45232 stoweidlem57 45235 salexct 45512 ovolval5lem3 45832 pimdecfgtioc 45893 pimincfltioc 45894 pimdecfgtioo 45895 pimincfltioo 45896 smfsuplem1 45989 smfsuplem3 45991 smfliminflem 46008 prprsprreu 46649 |
Copyright terms: Public domain | W3C validator |