| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 3427 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 |
| This theorem is referenced by: fvmptss 6980 tfis 7831 nqereu 10882 rpnnen1lem2 12936 rpnnen1lem1 12937 rpnnen1lem3 12938 rpnnen1lem5 12940 qustgpopn 24007 nbusgrf1o0 29296 finsumvtxdg2ssteplem3 29475 frgrwopreglem2 30242 frgrwopreglem5lem 30249 resf1o 32653 elrgspnlem4 33196 nsgqusf1olem2 33385 nsgqusf1olem3 33386 ballotlem2 34480 reprsuc 34606 oddprm2 34646 hgt750lemb 34647 bnj1476 34837 bnj1533 34842 bnj1538 34845 bnj1523 35061 cvmlift2lem12 35301 neibastop2lem 36348 topdifinfindis 37334 topdifinffinlem 37335 stoweidlem24 46022 stoweidlem31 46029 stoweidlem52 46050 stoweidlem54 46052 stoweidlem57 46055 salexct 46332 ovolval5lem3 46652 pimdecfgtioc 46713 pimincfltioc 46714 pimdecfgtioo 46715 pimincfltioo 46716 smfsuplem1 46809 smfsuplem3 46811 smfliminflem 46828 prprsprreu 47520 |
| Copyright terms: Public domain | W3C validator |