![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3465 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: fvmptss 7041 tfis 7892 nqereu 10998 rpnnen1lem2 13042 rpnnen1lem1 13043 rpnnen1lem3 13044 rpnnen1lem5 13046 qustgpopn 24149 addsproplem2 28021 sleadd1 28040 negsproplem6 28083 negsid 28091 nbusgrf1o0 29404 finsumvtxdg2ssteplem3 29583 frgrwopreglem2 30345 frgrwopreglem5lem 30352 resf1o 32744 nsgqusf1olem2 33407 nsgqusf1olem3 33408 ballotlem2 34453 reprsuc 34592 oddprm2 34632 hgt750lemb 34633 bnj1476 34823 bnj1533 34828 bnj1538 34831 bnj1523 35047 cvmlift2lem12 35282 neibastop2lem 36326 topdifinfindis 37312 topdifinffinlem 37313 stoweidlem24 45945 stoweidlem31 45952 stoweidlem52 45973 stoweidlem54 45975 stoweidlem57 45978 salexct 46255 ovolval5lem3 46575 pimdecfgtioc 46636 pimincfltioc 46637 pimdecfgtioo 46638 pimincfltioo 46639 smfsuplem1 46732 smfsuplem3 46734 smfliminflem 46751 prprsprreu 47393 |
Copyright terms: Public domain | W3C validator |