| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reqabi | Structured version Visualization version GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| reqabi.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| reqabi | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 3417 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 |
| This theorem is referenced by: fvmptss 6947 tfis 7791 nqereu 10827 rpnnen1lem2 12877 rpnnen1lem1 12878 rpnnen1lem3 12879 rpnnen1lem5 12881 qustgpopn 24036 nbusgrf1o0 29349 finsumvtxdg2ssteplem3 29528 frgrwopreglem2 30295 frgrwopreglem5lem 30302 partfun2 32661 resf1o 32717 elrgspnlem4 33219 nsgqusf1olem2 33386 nsgqusf1olem3 33387 ballotlem2 34523 reprsuc 34649 oddprm2 34689 hgt750lemb 34690 bnj1476 34880 bnj1533 34885 bnj1538 34888 bnj1523 35104 cvmlift2lem12 35379 neibastop2lem 36425 topdifinfindis 37411 topdifinffinlem 37412 stoweidlem24 46146 stoweidlem31 46153 stoweidlem52 46174 stoweidlem54 46176 stoweidlem57 46179 salexct 46456 ovolval5lem3 46776 pimdecfgtioc 46837 pimincfltioc 46838 pimdecfgtioo 46839 pimincfltioo 46840 smfsuplem1 46933 smfsuplem3 46935 smfliminflem 46952 prprsprreu 47643 |
| Copyright terms: Public domain | W3C validator |