MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reqabi Structured version   Visualization version   GIF version

Theorem reqabi 3429
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
reqabi.1 𝐴 = {𝑥𝐵𝜑}
Assertion
Ref Expression
reqabi (𝑥𝐴 ↔ (𝑥𝐵𝜑))

Proof of Theorem reqabi
StepHypRef Expression
1 reqabi.1 . . 3 𝐴 = {𝑥𝐵𝜑}
21eleq2i 2820 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝐵𝜑})
3 rabid 3427 . 2 (𝑥 ∈ {𝑥𝐵𝜑} ↔ (𝑥𝐵𝜑))
42, 3bitri 275 1 (𝑥𝐴 ↔ (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406
This theorem is referenced by:  fvmptss  6980  tfis  7831  nqereu  10882  rpnnen1lem2  12936  rpnnen1lem1  12937  rpnnen1lem3  12938  rpnnen1lem5  12940  qustgpopn  24007  nbusgrf1o0  29296  finsumvtxdg2ssteplem3  29475  frgrwopreglem2  30242  frgrwopreglem5lem  30249  resf1o  32653  elrgspnlem4  33196  nsgqusf1olem2  33385  nsgqusf1olem3  33386  ballotlem2  34480  reprsuc  34606  oddprm2  34646  hgt750lemb  34647  bnj1476  34837  bnj1533  34842  bnj1538  34845  bnj1523  35061  cvmlift2lem12  35301  neibastop2lem  36348  topdifinfindis  37334  topdifinffinlem  37335  stoweidlem24  46022  stoweidlem31  46029  stoweidlem52  46050  stoweidlem54  46052  stoweidlem57  46055  salexct  46332  ovolval5lem3  46652  pimdecfgtioc  46713  pimincfltioc  46714  pimdecfgtioo  46715  pimincfltioo  46716  smfsuplem1  46809  smfsuplem3  46811  smfliminflem  46828  prprsprreu  47520
  Copyright terms: Public domain W3C validator