MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   GIF version

Theorem extwwlkfab 30314
Description: The set (𝑋𝐶𝑁) of double loops of length 𝑁 on vertex 𝑋 can be constructed from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≤ 𝑁 is required since for 𝑁 = 2: 𝐹 = (𝑋(ClWWalksNOn‘𝐺)0) = ∅ (see clwwlk0on0 30054 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but (𝑋𝐶𝑁) needs not be empty, see 2clwwlk2 30310. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
extwwlkfab ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)

Proof of Theorem extwwlkfab
StepHypRef Expression
1 uzuzle23 12803 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlk 30309 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
41, 3sylan2 593 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
543adant1 1130 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
6 clwwlknon 30052 . . . 4 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
76rabeqi 3410 . . 3 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
8 rabrab 3421 . . . 4 {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
9 simpll3 1215 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
10 simplr 768 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
11 simpr 484 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = 𝑋)
12 simpl 482 . . . . . . . . . . . . . 14 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘0) = 𝑋)
1312eqcomd 2735 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑤‘0))
1411, 13eqtrd 2764 . . . . . . . . . . . 12 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
1514adantl 481 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
16 clwwnrepclwwn 30306 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
179, 10, 15, 16syl3anc 1373 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
1812adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘0) = 𝑋)
1917, 18jca 511 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
20 simp1 1136 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝐺 ∈ USGraph)
2120anim1i 615 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2221adantr 480 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
23 clwwlknlbonbgr1 30001 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
2422, 23syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
25 oveq2 7361 . . . . . . . . . . . . 13 (𝑋 = (𝑤‘0) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2625eqcoms 2737 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2726adantr 480 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2827adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2924, 28eleqtrrd 2831 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))
3011adantl 481 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = 𝑋)
3119, 29, 303jca 1128 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3231ex 412 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
33 simpr 484 . . . . . . . . 9 (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
3433anim1i 615 . . . . . . . 8 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
35343adant2 1131 . . . . . . 7 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3632, 35impbid1 225 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
37 2clwwlklem 30305 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
38373ad2antr3 1191 . . . . . . . . . . 11 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
3938ancoms 458 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
4039eqcomd 2735 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘0) = ((𝑤 prefix (𝑁 − 2))‘0))
4140eqeq1d 2731 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤‘0) = 𝑋 ↔ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4241anbi2d 630 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
43423anbi1d 1442 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
44 extwwlkfab.f . . . . . . . . . . 11 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4544eleq2i 2820 . . . . . . . . . 10 ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
46 isclwwlknon 30053 . . . . . . . . . . 11 ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4746a1i 11 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
4845, 47bitrid 283 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
49483anbi1d 1442 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5049bicomd 223 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5150adantr 480 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5236, 43, 513bitrd 305 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5352rabbidva 3403 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
548, 53eqtrid 2776 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
557, 54eqtrid 2776 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
565, 55eqtrd 2764 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  cfv 6486  (class class class)co 7353  cmpo 7355  0cc0 11028  1c1 11029  cmin 11365  2c2 12201  3c3 12202  cuz 12753   prefix cpfx 14595  Vtxcvtx 28959  USGraphcusgr 29112   NeighbVtx cnbgr 29295   ClWWalksN cclwwlkn 29986  ClWWalksNOncclwwlknon 30049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-lsw 14488  df-substr 14566  df-pfx 14596  df-edg 29011  df-upgr 29045  df-umgr 29046  df-usgr 29114  df-nbgr 29296  df-wwlks 29793  df-wwlksn 29794  df-clwwlk 29944  df-clwwlkn 29987  df-clwwlknon 30050
This theorem is referenced by:  extwwlkfabel  30315
  Copyright terms: Public domain W3C validator