MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   GIF version

Theorem extwwlkfab 27641
Description: The set (𝑋𝐶𝑁) of double loops of length 𝑁 on vertex 𝑋 can be constructed from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≤ 𝑁 is required since for 𝑁 = 2: 𝐹 = (𝑋(ClWWalksNOn‘𝐺)0) = ∅ (see clwwlk0on0 27364 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but (𝑋𝐶𝑁) needs not be empty, see 2clwwlk2 27633. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
extwwlkfab ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)

Proof of Theorem extwwlkfab
StepHypRef Expression
1 uzuzle23 11929 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlk 27632 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
41, 3sylan2 586 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
543adant1 1160 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
6 nfcv 2907 . . . 4 𝑤(𝑋(ClWWalksNOn‘𝐺)𝑁)
7 nfrab1 3270 . . . 4 𝑤{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
8 clwwlknon 27360 . . . 4 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
96, 7, 8rabeqif 3340 . . 3 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
10 rabrab 3264 . . . 4 {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
11 simpll3 1273 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
12 simplr 785 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
13 simpr 477 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = 𝑋)
14 simpl 474 . . . . . . . . . . . . . 14 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘0) = 𝑋)
1514eqcomd 2771 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑤‘0))
1613, 15eqtrd 2799 . . . . . . . . . . . 12 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
1716adantl 473 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
18 clwwnrepclwwn 27627 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
1911, 12, 17, 18syl3anc 1490 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
2014adantl 473 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘0) = 𝑋)
2119, 20jca 507 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
22 simp1 1166 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝐺 ∈ USGraph)
2322anim1i 608 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2423adantr 472 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
25 clwwlknlbonbgr1 27281 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
2624, 25syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
27 oveq2 6850 . . . . . . . . . . . . 13 (𝑋 = (𝑤‘0) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2827eqcoms 2773 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2928adantr 472 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
3029adantl 473 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
3126, 30eleqtrrd 2847 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))
3213adantl 473 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = 𝑋)
3321, 31, 323jca 1158 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3433ex 401 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
35 simpr 477 . . . . . . . . 9 (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
3635anim1i 608 . . . . . . . 8 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
37363adant2 1161 . . . . . . 7 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3834, 37impbid1 216 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
39 2clwwlklem 27625 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
40393ad2antr3 1241 . . . . . . . . . . 11 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
4140ancoms 450 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
4241eqcomd 2771 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘0) = ((𝑤 prefix (𝑁 − 2))‘0))
4342eqeq1d 2767 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤‘0) = 𝑋 ↔ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4443anbi2d 622 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
45443anbi1d 1564 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
46 extwwlkfab.f . . . . . . . . . . 11 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4746eleq2i 2836 . . . . . . . . . 10 ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
48 isclwwlknon 27362 . . . . . . . . . . 11 ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4948a1i 11 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
5047, 49syl5bb 274 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
51503anbi1d 1564 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5251bicomd 214 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5352adantr 472 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5438, 45, 533bitrd 296 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5554rabbidva 3337 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
5610, 55syl5eq 2811 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
579, 56syl5eq 2811 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
585, 57eqtrd 2799 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  {crab 3059  cfv 6068  (class class class)co 6842  cmpt2 6844  0cc0 10189  1c1 10190  cmin 10520  2c2 11327  3c3 11328  cuz 11886   prefix cpfx 13661  Vtxcvtx 26165  USGraphcusgr 26322   NeighbVtx cnbgr 26503   ClWWalksN cclwwlkn 27260  ClWWalksNOncclwwlknon 27357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-lsw 13534  df-substr 13617  df-pfx 13662  df-edg 26217  df-upgr 26254  df-umgr 26255  df-usgr 26324  df-nbgr 26504  df-wwlks 27015  df-wwlksn 27016  df-clwwlk 27209  df-clwwlkn 27262  df-clwwlknon 27358
This theorem is referenced by:  extwwlkfabel  27643
  Copyright terms: Public domain W3C validator