MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   GIF version

Theorem extwwlkfab 27885
Description: The set (𝑋𝐶𝑁) of double loops of length 𝑁 on vertex 𝑋 can be constructed from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≤ 𝑁 is required since for 𝑁 = 2: 𝐹 = (𝑋(ClWWalksNOn‘𝐺)0) = ∅ (see clwwlk0on0 27614 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but (𝑋𝐶𝑁) needs not be empty, see 2clwwlk2 27879. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
extwwlkfab ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)

Proof of Theorem extwwlkfab
StepHypRef Expression
1 uzuzle23 12097 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlk 27878 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
41, 3sylan2 583 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
543adant1 1110 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
6 clwwlknon 27612 . . . 4 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
76rabeqi 3399 . . 3 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
8 rabrab 3312 . . . 4 {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
9 simpll3 1194 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
10 simplr 756 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
11 simpr 477 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = 𝑋)
12 simpl 475 . . . . . . . . . . . . . 14 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘0) = 𝑋)
1312eqcomd 2778 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑤‘0))
1411, 13eqtrd 2808 . . . . . . . . . . . 12 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
1514adantl 474 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
16 clwwnrepclwwn 27873 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
179, 10, 15, 16syl3anc 1351 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
1812adantl 474 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘0) = 𝑋)
1917, 18jca 504 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
20 simp1 1116 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝐺 ∈ USGraph)
2120anim1i 605 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2221adantr 473 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
23 clwwlknlbonbgr1 27548 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
2422, 23syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
25 oveq2 6978 . . . . . . . . . . . . 13 (𝑋 = (𝑤‘0) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2625eqcoms 2780 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2726adantr 473 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2827adantl 474 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2924, 28eleqtrrd 2863 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))
3011adantl 474 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = 𝑋)
3119, 29, 303jca 1108 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3231ex 405 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
33 simpr 477 . . . . . . . . 9 (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
3433anim1i 605 . . . . . . . 8 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
35343adant2 1111 . . . . . . 7 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3632, 35impbid1 217 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
37 2clwwlklem 27871 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
38373ad2antr3 1170 . . . . . . . . . . 11 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
3938ancoms 451 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
4039eqcomd 2778 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘0) = ((𝑤 prefix (𝑁 − 2))‘0))
4140eqeq1d 2774 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤‘0) = 𝑋 ↔ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4241anbi2d 619 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
43423anbi1d 1419 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
44 extwwlkfab.f . . . . . . . . . . 11 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4544eleq2i 2851 . . . . . . . . . 10 ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
46 isclwwlknon 27613 . . . . . . . . . . 11 ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4746a1i 11 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
4845, 47syl5bb 275 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
49483anbi1d 1419 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5049bicomd 215 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5150adantr 473 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5236, 43, 513bitrd 297 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5352rabbidva 3396 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
548, 53syl5eq 2820 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
557, 54syl5eq 2820 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
565, 55eqtrd 2808 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  {crab 3086  cfv 6182  (class class class)co 6970  cmpo 6972  0cc0 10329  1c1 10330  cmin 10664  2c2 11489  3c3 11490  cuz 12052   prefix cpfx 13846  Vtxcvtx 26478  USGraphcusgr 26631   NeighbVtx cnbgr 26811   ClWWalksN cclwwlkn 27533  ClWWalksNOncclwwlknon 27609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-oadd 7903  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-dju 9118  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-3 11498  df-n0 11702  df-xnn0 11774  df-z 11788  df-uz 12053  df-fz 12703  df-fzo 12844  df-hash 13500  df-word 13667  df-lsw 13720  df-substr 13798  df-pfx 13847  df-edg 26530  df-upgr 26564  df-umgr 26565  df-usgr 26633  df-nbgr 26812  df-wwlks 27310  df-wwlksn 27311  df-clwwlk 27482  df-clwwlkn 27534  df-clwwlknon 27610
This theorem is referenced by:  extwwlkfabel  27887
  Copyright terms: Public domain W3C validator