MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   GIF version

Theorem extwwlkfab 28716
Description: The set (𝑋𝐶𝑁) of double loops of length 𝑁 on vertex 𝑋 can be constructed from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≤ 𝑁 is required since for 𝑁 = 2: 𝐹 = (𝑋(ClWWalksNOn‘𝐺)0) = ∅ (see clwwlk0on0 28456 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but (𝑋𝐶𝑁) needs not be empty, see 2clwwlk2 28712. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
extwwlkfab ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)

Proof of Theorem extwwlkfab
StepHypRef Expression
1 uzuzle23 12629 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlk 28711 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
41, 3sylan2 593 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
543adant1 1129 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
6 clwwlknon 28454 . . . 4 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
76rabeqi 3416 . . 3 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
8 rabrab 3311 . . . 4 {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
9 simpll3 1213 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
10 simplr 766 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
11 simpr 485 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = 𝑋)
12 simpl 483 . . . . . . . . . . . . . 14 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘0) = 𝑋)
1312eqcomd 2744 . . . . . . . . . . . . 13 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑤‘0))
1411, 13eqtrd 2778 . . . . . . . . . . . 12 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
1514adantl 482 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
16 clwwnrepclwwn 28708 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
179, 10, 15, 16syl3anc 1370 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
1812adantl 482 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘0) = 𝑋)
1917, 18jca 512 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
20 simp1 1135 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝐺 ∈ USGraph)
2120anim1i 615 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2221adantr 481 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
23 clwwlknlbonbgr1 28403 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
2422, 23syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
25 oveq2 7283 . . . . . . . . . . . . 13 (𝑋 = (𝑤‘0) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2625eqcoms 2746 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2726adantr 481 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2827adantl 482 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2924, 28eleqtrrd 2842 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))
3011adantl 482 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (𝑤‘(𝑁 − 2)) = 𝑋)
3119, 29, 303jca 1127 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3231ex 413 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
33 simpr 485 . . . . . . . . 9 (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
3433anim1i 615 . . . . . . . 8 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
35343adant2 1130 . . . . . . 7 ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3632, 35impbid1 224 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
37 2clwwlklem 28707 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
38373ad2antr3 1189 . . . . . . . . . . 11 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
3938ancoms 459 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 prefix (𝑁 − 2))‘0) = (𝑤‘0))
4039eqcomd 2744 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘0) = ((𝑤 prefix (𝑁 − 2))‘0))
4140eqeq1d 2740 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤‘0) = 𝑋 ↔ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4241anbi2d 629 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
43423anbi1d 1439 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
44 extwwlkfab.f . . . . . . . . . . 11 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4544eleq2i 2830 . . . . . . . . . 10 ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
46 isclwwlknon 28455 . . . . . . . . . . 11 ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋))
4746a1i 11 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
4845, 47syl5bb 283 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ ((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋)))
49483anbi1d 1439 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5049bicomd 222 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5150adantr 481 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 − 2))‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5236, 43, 513bitrd 305 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
5352rabbidva 3413 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
548, 53eqtrid 2790 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
557, 54eqtrid 2790 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
565, 55eqtrd 2778 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872  cmin 11205  2c2 12028  3c3 12029  cuz 12582   prefix cpfx 14383  Vtxcvtx 27366  USGraphcusgr 27519   NeighbVtx cnbgr 27699   ClWWalksN cclwwlkn 28388  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-substr 14354  df-pfx 14384  df-edg 27418  df-upgr 27452  df-umgr 27453  df-usgr 27521  df-nbgr 27700  df-wwlks 28195  df-wwlksn 28196  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  extwwlkfabel  28717
  Copyright terms: Public domain W3C validator