MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   GIF version

Theorem extwwlkfab 29594
Description: The set (𝑋𝐢𝑁) of double loops of length 𝑁 on vertex 𝑋 can be constructed from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≀ 𝑁 is required since for 𝑁 = 2: 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)0) = βˆ… (see clwwlk0on0 29334 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but (𝑋𝐢𝑁) needs not be empty, see 2clwwlk2 29590. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
Assertion
Ref Expression
extwwlkfab ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝐹(𝑀,𝑣,𝑛)

Proof of Theorem extwwlkfab
StepHypRef Expression
1 uzuzle23 12869 . . . 4 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
2 extwwlkfab.c . . . . 5 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
322clwwlk 29589 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
41, 3sylan2 593 . . 3 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
543adant1 1130 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
6 clwwlknon 29332 . . . 4 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
76rabeqi 3445 . . 3 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑀 ∈ {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
8 rabrab 3455 . . . 4 {𝑀 ∈ {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)}
9 simpll3 1214 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
10 simplr 767 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ 𝑀 ∈ (𝑁 ClWWalksN 𝐺))
11 simpr 485 . . . . . . . . . . . . 13 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)
12 simpl 483 . . . . . . . . . . . . . 14 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ (π‘€β€˜0) = 𝑋)
1312eqcomd 2738 . . . . . . . . . . . . 13 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ 𝑋 = (π‘€β€˜0))
1411, 13eqtrd 2772 . . . . . . . . . . . 12 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ (π‘€β€˜(𝑁 βˆ’ 2)) = (π‘€β€˜0))
1514adantl 482 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (π‘€β€˜(𝑁 βˆ’ 2)) = (π‘€β€˜0))
16 clwwnrepclwwn 29586 . . . . . . . . . . 11 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = (π‘€β€˜0)) β†’ (𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺))
179, 10, 15, 16syl3anc 1371 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺))
1812adantl 482 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (π‘€β€˜0) = 𝑋)
1917, 18jca 512 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋))
20 simp1 1136 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝐺 ∈ USGraph)
2120anim1i 615 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (𝐺 ∈ USGraph ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)))
2221adantr 481 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (𝐺 ∈ USGraph ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)))
23 clwwlknlbonbgr1 29281 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx (π‘€β€˜0)))
2422, 23syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx (π‘€β€˜0)))
25 oveq2 7413 . . . . . . . . . . . . 13 (𝑋 = (π‘€β€˜0) β†’ (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (π‘€β€˜0)))
2625eqcoms 2740 . . . . . . . . . . . 12 ((π‘€β€˜0) = 𝑋 β†’ (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (π‘€β€˜0)))
2726adantr 481 . . . . . . . . . . 11 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (π‘€β€˜0)))
2827adantl 482 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (π‘€β€˜0)))
2924, 28eleqtrrd 2836 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋))
3011adantl 482 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)
3119, 29, 303jca 1128 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)) β†’ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
3231ex 413 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
33 simpr 485 . . . . . . . . 9 (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) = 𝑋)
3433anim1i 615 . . . . . . . 8 ((((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
35343adant2 1131 . . . . . . 7 ((((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
3632, 35impbid1 224 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
37 2clwwlklem 29585 . . . . . . . . . . . 12 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = (π‘€β€˜0))
38373ad2antr3 1190 . . . . . . . . . . 11 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = (π‘€β€˜0))
3938ancoms 459 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = (π‘€β€˜0))
4039eqcomd 2738 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (π‘€β€˜0) = ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0))
4140eqeq1d 2734 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋))
4241anbi2d 629 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋)))
43423anbi1d 1440 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ ((((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
44 extwwlkfab.f . . . . . . . . . . 11 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
4544eleq2i 2825 . . . . . . . . . 10 ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ↔ (𝑀 prefix (𝑁 βˆ’ 2)) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
46 isclwwlknon 29333 . . . . . . . . . . 11 ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋))
4746a1i 11 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋)))
4845, 47bitrid 282 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋)))
49483anbi1d 1440 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ (((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
5049bicomd 222 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
5150adantr 481 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ ((((𝑀 prefix (𝑁 βˆ’ 2)) ∈ ((𝑁 βˆ’ 2) ClWWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 βˆ’ 2))β€˜0) = 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
5236, 43, 513bitrd 304 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑀 ∈ (𝑁 ClWWalksN 𝐺)) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)))
5352rabbidva 3439 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)} = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)})
548, 53eqtrid 2784 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ {𝑀 ∈ {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)})
557, 54eqtrid 2784 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)})
565, 55eqtrd 2772 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (π‘€β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   βˆ’ cmin 11440  2c2 12263  3c3 12264  β„€β‰₯cuz 12818   prefix cpfx 14616  Vtxcvtx 28245  USGraphcusgr 28398   NeighbVtx cnbgr 28578   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-substr 14587  df-pfx 14617  df-edg 28297  df-upgr 28331  df-umgr 28332  df-usgr 28400  df-nbgr 28579  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  extwwlkfabel  29595
  Copyright terms: Public domain W3C validator