![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsnt | Structured version Visualization version GIF version |
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsnt.1 | ⊢ 𝐵 ∈ V |
rabsnt.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabsnt | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnt.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | snid 4663 | . . 3 ⊢ 𝐵 ∈ {𝐵} |
3 | id 22 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵}) | |
4 | 2, 3 | eleqtrrid 2840 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
5 | rabsnt.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
6 | 5 | elrab 3682 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ∈ 𝐴 ∧ 𝜓)) |
7 | 6 | simprbi 497 | . 2 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜓) |
8 | 4, 7 | syl 17 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-sn 4628 |
This theorem is referenced by: ddemeas 33222 |
Copyright terms: Public domain | W3C validator |