MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnt Structured version   Visualization version   GIF version

Theorem rabsnt 4756
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
rabsnt.1 𝐵 ∈ V
rabsnt.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabsnt ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnt
StepHypRef Expression
1 rabsnt.1 . . . 4 𝐵 ∈ V
21snid 4684 . . 3 𝐵 ∈ {𝐵}
3 id 22 . . 3 ({𝑥𝐴𝜑} = {𝐵} → {𝑥𝐴𝜑} = {𝐵})
42, 3eleqtrrid 2851 . 2 ({𝑥𝐴𝜑} = {𝐵} → 𝐵 ∈ {𝑥𝐴𝜑})
5 rabsnt.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
65elrab 3708 . . 3 (𝐵 ∈ {𝑥𝐴𝜑} ↔ (𝐵𝐴𝜓))
76simprbi 496 . 2 (𝐵 ∈ {𝑥𝐴𝜑} → 𝜓)
84, 7syl 17 1 ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-sn 4649
This theorem is referenced by:  ddemeas  34200
  Copyright terms: Public domain W3C validator