Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabsnt | Structured version Visualization version GIF version |
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsnt.1 | ⊢ 𝐵 ∈ V |
rabsnt.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabsnt | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnt.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | snid 4594 | . . 3 ⊢ 𝐵 ∈ {𝐵} |
3 | id 22 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵}) | |
4 | 2, 3 | eleqtrrid 2846 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
5 | rabsnt.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
6 | 5 | elrab 3617 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ∈ 𝐴 ∧ 𝜓)) |
7 | 6 | simprbi 496 | . 2 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜓) |
8 | 4, 7 | syl 17 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-sn 4559 |
This theorem is referenced by: ddemeas 32104 |
Copyright terms: Public domain | W3C validator |