| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4157 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
| 2 | df-pr 4628 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | df-pr 4628 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2774 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Copyright terms: Public domain | W3C validator |