Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prcom | Structured version Visualization version GIF version |
Description: Commutative law for unordered pairs. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4087 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
2 | df-pr 4564 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | df-pr 4564 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
4 | 1, 2, 3 | 3eqtr4i 2776 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Copyright terms: Public domain | W3C validator |