| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2840 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: rabsnt 4707 onnev 6480 opabiota 6960 canth 7357 onnseq 8356 tfrlem16 8405 oen0 8596 nnawordex 8647 inf0 9633 cantnflt 9684 cnfcom2 9714 cnfcom3lem 9715 cnfcom3 9716 r1ordg 9790 r1val1 9798 rankr1id 9874 acacni 10153 dfacacn 10154 dfac13 10155 ttukeylem5 10525 ttukeylem6 10526 gch2 10687 gch3 10688 gchac 10693 gchina 10711 swrds1 14682 wrdl3s3 14979 sadcp1 16472 lcmfunsnlem2 16657 fnpr2ob 17570 idfucl 17892 gsumval2 18662 gsumz 18812 frmdmnd 18835 frmd0 18836 efginvrel2 19706 efgcpbl2 19736 pgpfaclem1 20062 lbsexg 21123 zringndrg 21427 frlmlbs 21755 mat0dimscm 22405 mat0scmat 22474 m2detleiblem5 22561 m2detleiblem6 22562 m2detleiblem3 22565 m2detleiblem4 22566 d0mat2pmat 22674 chpmat0d 22770 dfac14 23554 acufl 23853 cnextfvval 24001 cnextcn 24003 minveclem3b 25378 minveclem4a 25380 ovollb2 25440 ovolunlem1a 25447 ovolunlem1 25448 ovoliunlem1 25453 ovoliun2 25457 ioombl1lem4 25512 uniioombllem1 25532 uniioombllem2 25534 uniioombllem6 25539 itg2monolem1 25701 itg2mono 25704 itg2cnlem1 25712 xrlimcnp 26928 efrlim 26929 efrlimOLD 26930 eengbas 28906 ebtwntg 28907 ecgrtg 28908 elntg 28909 wlkl1loop 29564 elwwlks2ons3im 29882 upgr3v3e3cycl 30107 upgr4cycl4dv4e 30112 2clwwlk2clwwlk 30277 ex-br 30358 trsp2cyc 33080 cyc3evpm 33107 ply1dg1rtn0 33539 lvecdim0 33592 extdg1id 33653 irngss 33674 rge0scvg 33926 repr0 34589 hgt750lemg 34632 mrsub0 35484 elmrsubrn 35488 topjoin 36329 finorwe 37346 pclfinN 39865 aomclem1 43025 dfac21 43037 naddgeoa 43365 clsk1indlem1 44016 mnurndlem1 44253 fourierdlem102 46185 fourierdlem114 46197 cycl3grtri 47907 lincval0 48339 lcoel0 48352 discsubc 48979 prsthinc 49298 isinito2lem 49331 termcarweu 49361 diag1f1o 49367 diag2f1o 49370 |
| Copyright terms: Public domain | W3C validator |