Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrid 2845 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: rabsnt 4664 onnev 6372 onnevOLD 6373 opabiota 6833 canth 7209 onnseq 8146 tfrlem16 8195 oen0 8379 nnawordex 8430 inf0 9309 cantnflt 9360 cnfcom2 9390 cnfcom3lem 9391 cnfcom3 9392 r1ordg 9467 r1val1 9475 rankr1id 9551 acacni 9827 dfacacn 9828 dfac13 9829 ttukeylem5 10200 ttukeylem6 10201 gch2 10362 gch3 10363 gchac 10368 gchina 10386 swrds1 14307 wrdl3s3 14605 sadcp1 16090 lcmfunsnlem2 16273 fnpr2ob 17186 idfucl 17512 gsumval2 18285 gsumz 18389 frmdmnd 18413 frmd0 18414 efginvrel2 19248 efgcpbl2 19278 pgpfaclem1 19599 lbsexg 20341 zringndrg 20602 frlmlbs 20914 mat0dimscm 21526 mat0scmat 21595 m2detleiblem5 21682 m2detleiblem6 21683 m2detleiblem3 21686 m2detleiblem4 21687 d0mat2pmat 21795 chpmat0d 21891 dfac14 22677 acufl 22976 cnextfvval 23124 cnextcn 23126 minveclem3b 24497 minveclem4a 24499 ovollb2 24558 ovolunlem1a 24565 ovolunlem1 24566 ovoliunlem1 24571 ovoliun2 24575 ioombl1lem4 24630 uniioombllem1 24650 uniioombllem2 24652 uniioombllem6 24657 itg2monolem1 24820 itg2mono 24823 itg2cnlem1 24831 xrlimcnp 26023 efrlim 26024 eengbas 27252 ebtwntg 27253 ecgrtg 27254 elntg 27255 wlkl1loop 27907 elwwlks2ons3im 28220 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 2clwwlk2clwwlk 28615 ex-br 28696 trsp2cyc 31292 cyc3evpm 31319 lvecdim0 31592 extdg1id 31640 rge0scvg 31801 repr0 32491 hgt750lemg 32534 mrsub0 33378 elmrsubrn 33382 topjoin 34481 finorwe 35480 pclfinN 37841 aomclem1 40795 dfac21 40807 clsk1indlem1 41544 mnurndlem1 41788 fourierdlem102 43639 fourierdlem114 43651 lincval0 45644 lcoel0 45657 prsthinc 46223 |
Copyright terms: Public domain | W3C validator |