Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrid 2845 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: rabsnt 4667 onnev 6387 onnevOLD 6388 opabiota 6851 canth 7229 onnseq 8175 tfrlem16 8224 oen0 8417 nnawordex 8468 inf0 9379 cantnflt 9430 cnfcom2 9460 cnfcom3lem 9461 cnfcom3 9462 r1ordg 9536 r1val1 9544 rankr1id 9620 acacni 9896 dfacacn 9897 dfac13 9898 ttukeylem5 10269 ttukeylem6 10270 gch2 10431 gch3 10432 gchac 10437 gchina 10455 swrds1 14379 wrdl3s3 14677 sadcp1 16162 lcmfunsnlem2 16345 fnpr2ob 17269 idfucl 17596 gsumval2 18370 gsumz 18474 frmdmnd 18498 frmd0 18499 efginvrel2 19333 efgcpbl2 19363 pgpfaclem1 19684 lbsexg 20426 zringndrg 20690 frlmlbs 21004 mat0dimscm 21618 mat0scmat 21687 m2detleiblem5 21774 m2detleiblem6 21775 m2detleiblem3 21778 m2detleiblem4 21779 d0mat2pmat 21887 chpmat0d 21983 dfac14 22769 acufl 23068 cnextfvval 23216 cnextcn 23218 minveclem3b 24592 minveclem4a 24594 ovollb2 24653 ovolunlem1a 24660 ovolunlem1 24661 ovoliunlem1 24666 ovoliun2 24670 ioombl1lem4 24725 uniioombllem1 24745 uniioombllem2 24747 uniioombllem6 24752 itg2monolem1 24915 itg2mono 24918 itg2cnlem1 24926 xrlimcnp 26118 efrlim 26119 eengbas 27349 ebtwntg 27350 ecgrtg 27351 elntg 27352 wlkl1loop 28005 elwwlks2ons3im 28319 upgr3v3e3cycl 28544 upgr4cycl4dv4e 28549 2clwwlk2clwwlk 28714 ex-br 28795 trsp2cyc 31390 cyc3evpm 31417 lvecdim0 31690 extdg1id 31738 rge0scvg 31899 repr0 32591 hgt750lemg 32634 mrsub0 33478 elmrsubrn 33482 topjoin 34554 finorwe 35553 pclfinN 37914 aomclem1 40879 dfac21 40891 clsk1indlem1 41655 mnurndlem1 41899 fourierdlem102 43749 fourierdlem114 43761 lincval0 45756 lcoel0 45769 prsthinc 46335 |
Copyright terms: Public domain | W3C validator |