| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2837 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: rabsnt 4681 onnev 6434 opabiota 6904 canth 7300 onnseq 8264 tfrlem16 8312 oen0 8501 nnawordex 8552 inf0 9511 cantnflt 9562 cnfcom2 9592 cnfcom3lem 9593 cnfcom3 9594 r1ordg 9671 r1val1 9679 rankr1id 9755 acacni 10032 dfacacn 10033 dfac13 10034 ttukeylem5 10404 ttukeylem6 10405 gch2 10566 gch3 10567 gchac 10572 gchina 10590 swrds1 14574 wrdl3s3 14869 sadcp1 16366 lcmfunsnlem2 16551 fnpr2ob 17462 idfucl 17788 gsumval2 18594 gsumz 18744 frmdmnd 18767 frmd0 18768 efginvrel2 19639 efgcpbl2 19669 pgpfaclem1 19995 lbsexg 21101 zringndrg 21405 frlmlbs 21734 mat0dimscm 22384 mat0scmat 22453 m2detleiblem5 22540 m2detleiblem6 22541 m2detleiblem3 22544 m2detleiblem4 22545 d0mat2pmat 22653 chpmat0d 22749 dfac14 23533 acufl 23832 cnextfvval 23980 cnextcn 23982 minveclem3b 25355 minveclem4a 25357 ovollb2 25417 ovolunlem1a 25424 ovolunlem1 25425 ovoliunlem1 25430 ovoliun2 25434 ioombl1lem4 25489 uniioombllem1 25509 uniioombllem2 25511 uniioombllem6 25516 itg2monolem1 25678 itg2mono 25681 itg2cnlem1 25689 xrlimcnp 26905 efrlim 26906 efrlimOLD 26907 eengbas 28959 ebtwntg 28960 ecgrtg 28961 elntg 28962 wlkl1loop 29616 elwwlks2ons3im 29932 upgr3v3e3cycl 30160 upgr4cycl4dv4e 30165 2clwwlk2clwwlk 30330 ex-br 30411 trsp2cyc 33092 cyc3evpm 33119 ply1dg1rtn0 33544 lvecdim0 33619 extdg1id 33679 irngss 33700 rge0scvg 33962 repr0 34624 hgt750lemg 34667 r1wf 35107 mrsub0 35560 elmrsubrn 35564 topjoin 36409 finorwe 37426 pclfinN 40009 aomclem1 43157 dfac21 43169 naddgeoa 43497 clsk1indlem1 44148 mnurndlem1 44384 fourierdlem102 46316 fourierdlem114 46328 cycl3grtri 48057 lincval0 48526 lcoel0 48539 discsubc 49175 prsthinc 49575 isinito2lem 49609 termcarweu 49639 diag1f1o 49645 diag2f1o 49648 initocmd 49780 |
| Copyright terms: Public domain | W3C validator |