![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2740 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrid 2844 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: rabsnt 4735 onnev 6512 opabiota 6990 canth 7384 onnseq 8382 tfrlem16 8431 oen0 8622 nnawordex 8673 inf0 9658 cantnflt 9709 cnfcom2 9739 cnfcom3lem 9740 cnfcom3 9741 r1ordg 9815 r1val1 9823 rankr1id 9899 acacni 10178 dfacacn 10179 dfac13 10180 ttukeylem5 10550 ttukeylem6 10551 gch2 10712 gch3 10713 gchac 10718 gchina 10736 swrds1 14700 wrdl3s3 14997 sadcp1 16488 lcmfunsnlem2 16673 fnpr2ob 17604 idfucl 17931 gsumval2 18711 gsumz 18861 frmdmnd 18884 frmd0 18885 efginvrel2 19759 efgcpbl2 19789 pgpfaclem1 20115 lbsexg 21183 zringndrg 21496 frlmlbs 21834 mat0dimscm 22490 mat0scmat 22559 m2detleiblem5 22646 m2detleiblem6 22647 m2detleiblem3 22650 m2detleiblem4 22651 d0mat2pmat 22759 chpmat0d 22855 dfac14 23641 acufl 23940 cnextfvval 24088 cnextcn 24090 minveclem3b 25475 minveclem4a 25477 ovollb2 25537 ovolunlem1a 25544 ovolunlem1 25545 ovoliunlem1 25550 ovoliun2 25554 ioombl1lem4 25609 uniioombllem1 25629 uniioombllem2 25631 uniioombllem6 25636 itg2monolem1 25799 itg2mono 25802 itg2cnlem1 25810 xrlimcnp 27025 efrlim 27026 efrlimOLD 27027 eengbas 29010 ebtwntg 29011 ecgrtg 29012 elntg 29013 wlkl1loop 29670 elwwlks2ons3im 29983 upgr3v3e3cycl 30208 upgr4cycl4dv4e 30213 2clwwlk2clwwlk 30378 ex-br 30459 trsp2cyc 33125 cyc3evpm 33152 ply1dg1rtn0 33584 lvecdim0 33633 extdg1id 33690 irngss 33701 rge0scvg 33909 repr0 34604 hgt750lemg 34647 mrsub0 35500 elmrsubrn 35504 topjoin 36347 finorwe 37364 pclfinN 39882 aomclem1 43042 dfac21 43054 naddgeoa 43383 clsk1indlem1 44034 mnurndlem1 44276 fourierdlem102 46163 fourierdlem114 46175 lincval0 48260 lcoel0 48273 prsthinc 48854 |
Copyright terms: Public domain | W3C validator |