![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2730 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrid 2831 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-clel 2802 |
This theorem is referenced by: rabsnt 4727 onnev 6481 onnevOLD 6482 opabiota 6964 canth 7354 onnseq 8339 tfrlem16 8388 oen0 8581 nnawordex 8632 inf0 9611 cantnflt 9662 cnfcom2 9692 cnfcom3lem 9693 cnfcom3 9694 r1ordg 9768 r1val1 9776 rankr1id 9852 acacni 10130 dfacacn 10131 dfac13 10132 ttukeylem5 10503 ttukeylem6 10504 gch2 10665 gch3 10666 gchac 10671 gchina 10689 swrds1 14612 wrdl3s3 14909 sadcp1 16392 lcmfunsnlem2 16573 fnpr2ob 17502 idfucl 17829 gsumval2 18608 gsumz 18750 frmdmnd 18773 frmd0 18774 efginvrel2 19636 efgcpbl2 19666 pgpfaclem1 19992 lbsexg 21004 zringndrg 21322 frlmlbs 21659 mat0dimscm 22292 mat0scmat 22361 m2detleiblem5 22448 m2detleiblem6 22449 m2detleiblem3 22452 m2detleiblem4 22453 d0mat2pmat 22561 chpmat0d 22657 dfac14 23443 acufl 23742 cnextfvval 23890 cnextcn 23892 minveclem3b 25277 minveclem4a 25279 ovollb2 25339 ovolunlem1a 25346 ovolunlem1 25347 ovoliunlem1 25352 ovoliun2 25356 ioombl1lem4 25411 uniioombllem1 25431 uniioombllem2 25433 uniioombllem6 25438 itg2monolem1 25601 itg2mono 25604 itg2cnlem1 25612 xrlimcnp 26815 efrlim 26816 efrlimOLD 26817 eengbas 28674 ebtwntg 28675 ecgrtg 28676 elntg 28677 wlkl1loop 29330 elwwlks2ons3im 29643 upgr3v3e3cycl 29868 upgr4cycl4dv4e 29873 2clwwlk2clwwlk 30038 ex-br 30119 trsp2cyc 32716 cyc3evpm 32743 lvecdim0 33136 extdg1id 33187 irngss 33197 rge0scvg 33384 repr0 34078 hgt750lemg 34121 mrsub0 34962 elmrsubrn 34966 topjoin 35706 finorwe 36719 pclfinN 39227 aomclem1 42251 dfac21 42263 naddgeoa 42600 clsk1indlem1 43251 mnurndlem1 43495 fourierdlem102 45375 fourierdlem114 45387 lincval0 47250 lcoel0 47263 prsthinc 47828 |
Copyright terms: Public domain | W3C validator |