![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrid 2850 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: rabsnt 4756 onnev 6522 opabiota 7004 canth 7401 onnseq 8400 tfrlem16 8449 oen0 8642 nnawordex 8693 inf0 9690 cantnflt 9741 cnfcom2 9771 cnfcom3lem 9772 cnfcom3 9773 r1ordg 9847 r1val1 9855 rankr1id 9931 acacni 10210 dfacacn 10211 dfac13 10212 ttukeylem5 10582 ttukeylem6 10583 gch2 10744 gch3 10745 gchac 10750 gchina 10768 swrds1 14714 wrdl3s3 15011 sadcp1 16501 lcmfunsnlem2 16687 fnpr2ob 17618 idfucl 17945 gsumval2 18724 gsumz 18871 frmdmnd 18894 frmd0 18895 efginvrel2 19769 efgcpbl2 19799 pgpfaclem1 20125 lbsexg 21189 zringndrg 21502 frlmlbs 21840 mat0dimscm 22496 mat0scmat 22565 m2detleiblem5 22652 m2detleiblem6 22653 m2detleiblem3 22656 m2detleiblem4 22657 d0mat2pmat 22765 chpmat0d 22861 dfac14 23647 acufl 23946 cnextfvval 24094 cnextcn 24096 minveclem3b 25481 minveclem4a 25483 ovollb2 25543 ovolunlem1a 25550 ovolunlem1 25551 ovoliunlem1 25556 ovoliun2 25560 ioombl1lem4 25615 uniioombllem1 25635 uniioombllem2 25637 uniioombllem6 25642 itg2monolem1 25805 itg2mono 25808 itg2cnlem1 25816 xrlimcnp 27029 efrlim 27030 efrlimOLD 27031 eengbas 29014 ebtwntg 29015 ecgrtg 29016 elntg 29017 wlkl1loop 29674 elwwlks2ons3im 29987 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 2clwwlk2clwwlk 30382 ex-br 30463 trsp2cyc 33116 cyc3evpm 33143 ply1dg1rtn0 33570 lvecdim0 33619 extdg1id 33676 irngss 33687 rge0scvg 33895 repr0 34588 hgt750lemg 34631 mrsub0 35484 elmrsubrn 35488 topjoin 36331 finorwe 37348 pclfinN 39857 aomclem1 43011 dfac21 43023 naddgeoa 43356 clsk1indlem1 44007 mnurndlem1 44250 fourierdlem102 46129 fourierdlem114 46141 lincval0 48144 lcoel0 48157 prsthinc 48721 |
Copyright terms: Public domain | W3C validator |