Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2764 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrid 2858 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-clel 2830 |
This theorem is referenced by: rabsnt 4627 onnev 6295 onnevOLD 6296 opabiota 6740 canth 7111 onnseq 7997 tfrlem16 8045 oen0 8228 nnawordex 8279 inf0 9130 cantnflt 9181 cnfcom2 9211 cnfcom3lem 9212 cnfcom3 9213 r1ordg 9253 r1val1 9261 rankr1id 9337 acacni 9613 dfacacn 9614 dfac13 9615 ttukeylem5 9986 ttukeylem6 9987 gch2 10148 gch3 10149 gchac 10154 gchina 10172 swrds1 14088 wrdl3s3 14386 sadcp1 15867 lcmfunsnlem2 16050 fnpr2ob 16903 idfucl 17224 gsumval2 17976 gsumz 18080 frmdmnd 18104 frmd0 18105 efginvrel2 18934 efgcpbl2 18964 pgpfaclem1 19285 lbsexg 20018 zringndrg 20272 frlmlbs 20576 mat0dimscm 21183 mat0scmat 21252 m2detleiblem5 21339 m2detleiblem6 21340 m2detleiblem3 21343 m2detleiblem4 21344 d0mat2pmat 21452 chpmat0d 21548 dfac14 22332 acufl 22631 cnextfvval 22779 cnextcn 22781 minveclem3b 24142 minveclem4a 24144 ovollb2 24203 ovolunlem1a 24210 ovolunlem1 24211 ovoliunlem1 24216 ovoliun2 24220 ioombl1lem4 24275 uniioombllem1 24295 uniioombllem2 24297 uniioombllem6 24302 itg2monolem1 24464 itg2mono 24467 itg2cnlem1 24475 xrlimcnp 25667 efrlim 25668 eengbas 26888 ebtwntg 26889 ecgrtg 26890 elntg 26891 wlkl1loop 27540 elwwlks2ons3im 27853 upgr3v3e3cycl 28078 upgr4cycl4dv4e 28083 2clwwlk2clwwlk 28248 ex-br 28329 trsp2cyc 30929 cyc3evpm 30956 lvecdim0 31224 extdg1id 31272 rge0scvg 31433 repr0 32123 hgt750lemg 32166 mrsub0 33007 elmrsubrn 33011 topjoin 34138 finorwe 35114 pclfinN 37511 aomclem1 40416 dfac21 40428 clsk1indlem1 41166 mnurndlem1 41407 fourierdlem102 43261 fourierdlem114 43273 lincval0 45248 lcoel0 45261 |
Copyright terms: Public domain | W3C validator |