| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: rabsnt 4691 onnev 6449 opabiota 6925 canth 7323 onnseq 8290 tfrlem16 8338 oen0 8527 nnawordex 8578 inf0 9550 cantnflt 9601 cnfcom2 9631 cnfcom3lem 9632 cnfcom3 9633 r1ordg 9707 r1val1 9715 rankr1id 9791 acacni 10070 dfacacn 10071 dfac13 10072 ttukeylem5 10442 ttukeylem6 10443 gch2 10604 gch3 10605 gchac 10610 gchina 10628 swrds1 14607 wrdl3s3 14904 sadcp1 16401 lcmfunsnlem2 16586 fnpr2ob 17497 idfucl 17823 gsumval2 18595 gsumz 18745 frmdmnd 18768 frmd0 18769 efginvrel2 19641 efgcpbl2 19671 pgpfaclem1 19997 lbsexg 21106 zringndrg 21410 frlmlbs 21739 mat0dimscm 22389 mat0scmat 22458 m2detleiblem5 22545 m2detleiblem6 22546 m2detleiblem3 22549 m2detleiblem4 22550 d0mat2pmat 22658 chpmat0d 22754 dfac14 23538 acufl 23837 cnextfvval 23985 cnextcn 23987 minveclem3b 25361 minveclem4a 25363 ovollb2 25423 ovolunlem1a 25430 ovolunlem1 25431 ovoliunlem1 25436 ovoliun2 25440 ioombl1lem4 25495 uniioombllem1 25515 uniioombllem2 25517 uniioombllem6 25522 itg2monolem1 25684 itg2mono 25687 itg2cnlem1 25695 xrlimcnp 26911 efrlim 26912 efrlimOLD 26913 eengbas 28961 ebtwntg 28962 ecgrtg 28963 elntg 28964 wlkl1loop 29618 elwwlks2ons3im 29934 upgr3v3e3cycl 30159 upgr4cycl4dv4e 30164 2clwwlk2clwwlk 30329 ex-br 30410 trsp2cyc 33095 cyc3evpm 33122 ply1dg1rtn0 33542 lvecdim0 33595 extdg1id 33654 irngss 33675 rge0scvg 33932 repr0 34595 hgt750lemg 34638 mrsub0 35496 elmrsubrn 35500 topjoin 36346 finorwe 37363 pclfinN 39887 aomclem1 43036 dfac21 43048 naddgeoa 43376 clsk1indlem1 44027 mnurndlem1 44263 fourierdlem102 46199 fourierdlem114 46211 cycl3grtri 47939 lincval0 48397 lcoel0 48410 discsubc 49046 prsthinc 49446 isinito2lem 49480 termcarweu 49510 diag1f1o 49516 diag2f1o 49519 initocmd 49651 |
| Copyright terms: Public domain | W3C validator |