| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: rabsnt 4691 onnev 6449 opabiota 6925 canth 7323 onnseq 8290 tfrlem16 8338 oen0 8527 nnawordex 8578 inf0 9550 cantnflt 9601 cnfcom2 9631 cnfcom3lem 9632 cnfcom3 9633 r1ordg 9707 r1val1 9715 rankr1id 9791 acacni 10070 dfacacn 10071 dfac13 10072 ttukeylem5 10442 ttukeylem6 10443 gch2 10604 gch3 10605 gchac 10610 gchina 10628 swrds1 14607 wrdl3s3 14904 sadcp1 16401 lcmfunsnlem2 16586 fnpr2ob 17497 idfucl 17819 gsumval2 18589 gsumz 18739 frmdmnd 18762 frmd0 18763 efginvrel2 19633 efgcpbl2 19663 pgpfaclem1 19989 lbsexg 21050 zringndrg 21354 frlmlbs 21682 mat0dimscm 22332 mat0scmat 22401 m2detleiblem5 22488 m2detleiblem6 22489 m2detleiblem3 22492 m2detleiblem4 22493 d0mat2pmat 22601 chpmat0d 22697 dfac14 23481 acufl 23780 cnextfvval 23928 cnextcn 23930 minveclem3b 25304 minveclem4a 25306 ovollb2 25366 ovolunlem1a 25373 ovolunlem1 25374 ovoliunlem1 25379 ovoliun2 25383 ioombl1lem4 25438 uniioombllem1 25458 uniioombllem2 25460 uniioombllem6 25465 itg2monolem1 25627 itg2mono 25630 itg2cnlem1 25638 xrlimcnp 26854 efrlim 26855 efrlimOLD 26856 eengbas 28884 ebtwntg 28885 ecgrtg 28886 elntg 28887 wlkl1loop 29541 elwwlks2ons3im 29857 upgr3v3e3cycl 30082 upgr4cycl4dv4e 30087 2clwwlk2clwwlk 30252 ex-br 30333 trsp2cyc 33053 cyc3evpm 33080 ply1dg1rtn0 33522 lvecdim0 33575 extdg1id 33634 irngss 33655 rge0scvg 33912 repr0 34575 hgt750lemg 34618 mrsub0 35476 elmrsubrn 35480 topjoin 36326 finorwe 37343 pclfinN 39867 aomclem1 43016 dfac21 43028 naddgeoa 43356 clsk1indlem1 44007 mnurndlem1 44243 fourierdlem102 46179 fourierdlem114 46191 cycl3grtri 47919 lincval0 48377 lcoel0 48390 discsubc 49026 prsthinc 49426 isinito2lem 49460 termcarweu 49490 diag1f1o 49496 diag2f1o 49499 initocmd 49631 |
| Copyright terms: Public domain | W3C validator |