| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: rabsnt 4695 onnev 6461 opabiota 6943 canth 7341 onnseq 8313 tfrlem16 8361 oen0 8550 nnawordex 8601 inf0 9574 cantnflt 9625 cnfcom2 9655 cnfcom3lem 9656 cnfcom3 9657 r1ordg 9731 r1val1 9739 rankr1id 9815 acacni 10094 dfacacn 10095 dfac13 10096 ttukeylem5 10466 ttukeylem6 10467 gch2 10628 gch3 10629 gchac 10634 gchina 10652 swrds1 14631 wrdl3s3 14928 sadcp1 16425 lcmfunsnlem2 16610 fnpr2ob 17521 idfucl 17843 gsumval2 18613 gsumz 18763 frmdmnd 18786 frmd0 18787 efginvrel2 19657 efgcpbl2 19687 pgpfaclem1 20013 lbsexg 21074 zringndrg 21378 frlmlbs 21706 mat0dimscm 22356 mat0scmat 22425 m2detleiblem5 22512 m2detleiblem6 22513 m2detleiblem3 22516 m2detleiblem4 22517 d0mat2pmat 22625 chpmat0d 22721 dfac14 23505 acufl 23804 cnextfvval 23952 cnextcn 23954 minveclem3b 25328 minveclem4a 25330 ovollb2 25390 ovolunlem1a 25397 ovolunlem1 25398 ovoliunlem1 25403 ovoliun2 25407 ioombl1lem4 25462 uniioombllem1 25482 uniioombllem2 25484 uniioombllem6 25489 itg2monolem1 25651 itg2mono 25654 itg2cnlem1 25662 xrlimcnp 26878 efrlim 26879 efrlimOLD 26880 eengbas 28908 ebtwntg 28909 ecgrtg 28910 elntg 28911 wlkl1loop 29566 elwwlks2ons3im 29884 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 2clwwlk2clwwlk 30279 ex-br 30360 trsp2cyc 33080 cyc3evpm 33107 ply1dg1rtn0 33549 lvecdim0 33602 extdg1id 33661 irngss 33682 rge0scvg 33939 repr0 34602 hgt750lemg 34645 mrsub0 35503 elmrsubrn 35507 topjoin 36353 finorwe 37370 pclfinN 39894 aomclem1 43043 dfac21 43055 naddgeoa 43383 clsk1indlem1 44034 mnurndlem1 44270 fourierdlem102 46206 fourierdlem114 46218 cycl3grtri 47946 lincval0 48404 lcoel0 48417 discsubc 49053 prsthinc 49453 isinito2lem 49487 termcarweu 49517 diag1f1o 49523 diag2f1o 49526 initocmd 49658 |
| Copyright terms: Public domain | W3C validator |