| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: rabsnt 4683 onnev 6435 opabiota 6905 canth 7303 onnseq 8267 tfrlem16 8315 oen0 8504 nnawordex 8555 inf0 9517 cantnflt 9568 cnfcom2 9598 cnfcom3lem 9599 cnfcom3 9600 r1ordg 9674 r1val1 9682 rankr1id 9758 acacni 10035 dfacacn 10036 dfac13 10037 ttukeylem5 10407 ttukeylem6 10408 gch2 10569 gch3 10570 gchac 10575 gchina 10593 swrds1 14573 wrdl3s3 14869 sadcp1 16366 lcmfunsnlem2 16551 fnpr2ob 17462 idfucl 17788 gsumval2 18560 gsumz 18710 frmdmnd 18733 frmd0 18734 efginvrel2 19606 efgcpbl2 19636 pgpfaclem1 19962 lbsexg 21071 zringndrg 21375 frlmlbs 21704 mat0dimscm 22354 mat0scmat 22423 m2detleiblem5 22510 m2detleiblem6 22511 m2detleiblem3 22514 m2detleiblem4 22515 d0mat2pmat 22623 chpmat0d 22719 dfac14 23503 acufl 23802 cnextfvval 23950 cnextcn 23952 minveclem3b 25326 minveclem4a 25328 ovollb2 25388 ovolunlem1a 25395 ovolunlem1 25396 ovoliunlem1 25401 ovoliun2 25405 ioombl1lem4 25460 uniioombllem1 25480 uniioombllem2 25482 uniioombllem6 25487 itg2monolem1 25649 itg2mono 25652 itg2cnlem1 25660 xrlimcnp 26876 efrlim 26877 efrlimOLD 26878 eengbas 28926 ebtwntg 28927 ecgrtg 28928 elntg 28929 wlkl1loop 29583 elwwlks2ons3im 29899 upgr3v3e3cycl 30124 upgr4cycl4dv4e 30129 2clwwlk2clwwlk 30294 ex-br 30375 trsp2cyc 33065 cyc3evpm 33092 ply1dg1rtn0 33516 lvecdim0 33573 extdg1id 33633 irngss 33654 rge0scvg 33916 repr0 34579 hgt750lemg 34622 mrsub0 35489 elmrsubrn 35493 topjoin 36339 finorwe 37356 pclfinN 39879 aomclem1 43027 dfac21 43039 naddgeoa 43367 clsk1indlem1 44018 mnurndlem1 44254 fourierdlem102 46189 fourierdlem114 46201 cycl3grtri 47931 lincval0 48400 lcoel0 48413 discsubc 49049 prsthinc 49449 isinito2lem 49483 termcarweu 49513 diag1f1o 49519 diag2f1o 49522 initocmd 49654 |
| Copyright terms: Public domain | W3C validator |