| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrid 2835 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: rabsnt 4698 onnev 6464 opabiota 6946 canth 7344 onnseq 8316 tfrlem16 8364 oen0 8553 nnawordex 8604 inf0 9581 cantnflt 9632 cnfcom2 9662 cnfcom3lem 9663 cnfcom3 9664 r1ordg 9738 r1val1 9746 rankr1id 9822 acacni 10101 dfacacn 10102 dfac13 10103 ttukeylem5 10473 ttukeylem6 10474 gch2 10635 gch3 10636 gchac 10641 gchina 10659 swrds1 14638 wrdl3s3 14935 sadcp1 16432 lcmfunsnlem2 16617 fnpr2ob 17528 idfucl 17850 gsumval2 18620 gsumz 18770 frmdmnd 18793 frmd0 18794 efginvrel2 19664 efgcpbl2 19694 pgpfaclem1 20020 lbsexg 21081 zringndrg 21385 frlmlbs 21713 mat0dimscm 22363 mat0scmat 22432 m2detleiblem5 22519 m2detleiblem6 22520 m2detleiblem3 22523 m2detleiblem4 22524 d0mat2pmat 22632 chpmat0d 22728 dfac14 23512 acufl 23811 cnextfvval 23959 cnextcn 23961 minveclem3b 25335 minveclem4a 25337 ovollb2 25397 ovolunlem1a 25404 ovolunlem1 25405 ovoliunlem1 25410 ovoliun2 25414 ioombl1lem4 25469 uniioombllem1 25489 uniioombllem2 25491 uniioombllem6 25496 itg2monolem1 25658 itg2mono 25661 itg2cnlem1 25669 xrlimcnp 26885 efrlim 26886 efrlimOLD 26887 eengbas 28915 ebtwntg 28916 ecgrtg 28917 elntg 28918 wlkl1loop 29573 elwwlks2ons3im 29891 upgr3v3e3cycl 30116 upgr4cycl4dv4e 30121 2clwwlk2clwwlk 30286 ex-br 30367 trsp2cyc 33087 cyc3evpm 33114 ply1dg1rtn0 33556 lvecdim0 33609 extdg1id 33668 irngss 33689 rge0scvg 33946 repr0 34609 hgt750lemg 34652 mrsub0 35510 elmrsubrn 35514 topjoin 36360 finorwe 37377 pclfinN 39901 aomclem1 43050 dfac21 43062 naddgeoa 43390 clsk1indlem1 44041 mnurndlem1 44277 fourierdlem102 46213 fourierdlem114 46225 cycl3grtri 47950 lincval0 48408 lcoel0 48421 discsubc 49057 prsthinc 49457 isinito2lem 49491 termcarweu 49521 diag1f1o 49527 diag2f1o 49530 initocmd 49662 |
| Copyright terms: Public domain | W3C validator |