MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusn Structured version   Visualization version   GIF version

Theorem eusn 4683
Description: Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 4679 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥{𝑥𝑥𝐴} = {𝑥})
2 abid2 2868 . . . 4 {𝑥𝑥𝐴} = 𝐴
32eqeq1i 2736 . . 3 ({𝑥𝑥𝐴} = {𝑥} ↔ 𝐴 = {𝑥})
43exbii 1849 . 2 (∃𝑥{𝑥𝑥𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})
51, 4bitri 275 1 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  {cab 2709  {csn 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-sn 4577
This theorem is referenced by:  initoid  17908  termoid  17909  initoeu2lem1  17921  irinitoringc  21417  funpartfv  35985  initc  49129  fullthinc  49488  istermc2  49513  functermceu  49548  mndtcbas  49619
  Copyright terms: Public domain W3C validator