MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusn Structured version   Visualization version   GIF version

Theorem eusn 4755
Description: Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 4751 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥{𝑥𝑥𝐴} = {𝑥})
2 abid2 2882 . . . 4 {𝑥𝑥𝐴} = 𝐴
32eqeq1i 2745 . . 3 ({𝑥𝑥𝐴} = {𝑥} ↔ 𝐴 = {𝑥})
43exbii 1846 . 2 (∃𝑥{𝑥𝑥𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})
51, 4bitri 275 1 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {cab 2717  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-sn 4649
This theorem is referenced by:  initoid  18068  termoid  18069  initoeu2lem1  18081  irinitoringc  21513  funpartfv  35909  fullthinc  48713  mndtcbas  48754
  Copyright terms: Public domain W3C validator