Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eusn | Structured version Visualization version GIF version |
Description: Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.) |
Ref | Expression |
---|---|
eusn | ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn 4659 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥}) | |
2 | abid2 2881 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | eqeq1i 2743 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥} ↔ 𝐴 = {𝑥}) |
4 | 3 | exbii 1851 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 {cab 2715 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sn 4559 |
This theorem is referenced by: initoid 17632 termoid 17633 initoeu2lem1 17645 funpartfv 34174 irinitoringc 45515 fullthinc 46215 mndtcbas 46254 |
Copyright terms: Public domain | W3C validator |