| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusn | Structured version Visualization version GIF version | ||
| Description: Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.) |
| Ref | Expression |
|---|---|
| eusn | ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn 4702 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥}) | |
| 2 | abid2 2872 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 3 | 2 | eqeq1i 2740 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥} ↔ 𝐴 = {𝑥}) |
| 4 | 3 | exbii 1848 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃!weu 2567 {cab 2713 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-sn 4602 |
| This theorem is referenced by: initoid 18012 termoid 18013 initoeu2lem1 18025 irinitoringc 21438 funpartfv 35909 fullthinc 49284 istermc2 49309 functermceu 49343 mndtcbas 49406 |
| Copyright terms: Public domain | W3C validator |