![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eusn | Structured version Visualization version GIF version |
Description: Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.) |
Ref | Expression |
---|---|
eusn | ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn 4731 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥}) | |
2 | abid2 2872 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | eqeq1i 2738 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥} ↔ 𝐴 = {𝑥}) |
4 | 3 | exbii 1851 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}) |
5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃!weu 2563 {cab 2710 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-sn 4630 |
This theorem is referenced by: initoid 17951 termoid 17952 initoeu2lem1 17964 funpartfv 34917 irinitoringc 46967 fullthinc 47666 mndtcbas 47707 |
Copyright terms: Public domain | W3C validator |