| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1817. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3074 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | ral2imi 3074 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ral 3051 |
| This theorem is referenced by: uniiunlem 4060 iineq2 4986 reusv2lem5 5370 ralrnmptw 7081 ralrnmpt 7083 f1mpt 7250 mpo2eqb 7534 ralrnmpo 7541 naddcom 8689 naddrid 8690 naddass 8703 rankonidlem 9835 acni2 10053 kmlem8 10165 kmlem13 10170 fimaxre3 12181 cau3lem 15362 rlim2 15501 rlim0 15513 rlim0lt 15514 catpropd 17708 funcres2b 17897 ulmss 26345 lgamgulmlem6 26982 colinearalg 28823 axpasch 28854 axcontlem2 28878 axcontlem4 28880 axcontlem7 28883 axcontlem8 28884 neibastop3 36309 bj-0int 37048 ralbi12f 38113 iineq12f 38117 pmapglbx 39717 ordelordALTVD 44825 |
| Copyright terms: Public domain | W3C validator |