| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1818. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | ral2imi 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: uniiunlem 4050 iineq2 4976 reusv2lem5 5357 ralrnmptw 7066 ralrnmpt 7068 f1mpt 7236 mpo2eqb 7521 ralrnmpo 7528 naddcom 8646 naddrid 8647 naddass 8660 rankonidlem 9781 acni2 9999 kmlem8 10111 kmlem13 10116 fimaxre3 12129 cau3lem 15321 rlim2 15462 rlim0 15474 rlim0lt 15475 catpropd 17670 funcres2b 17859 ulmss 26306 lgamgulmlem6 26944 colinearalg 28837 axpasch 28868 axcontlem2 28892 axcontlem4 28894 axcontlem7 28897 axcontlem8 28898 neibastop3 36350 bj-0int 37089 ralbi12f 38154 iineq12f 38158 pmapglbx 39763 ordelordALTVD 44856 |
| Copyright terms: Public domain | W3C validator |