| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1818. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | ral2imi 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: uniiunlem 4038 iineq2 4962 reusv2lem5 5341 ralrnmptw 7028 ralrnmpt 7030 f1mpt 7198 mpo2eqb 7481 ralrnmpo 7488 naddcom 8600 naddrid 8601 naddass 8614 rankonidlem 9724 acni2 9940 kmlem8 10052 kmlem13 10057 fimaxre3 12071 cau3lem 15262 rlim2 15403 rlim0 15415 rlim0lt 15416 catpropd 17615 funcres2b 17804 ulmss 26304 lgamgulmlem6 26942 colinearalg 28855 axpasch 28886 axcontlem2 28910 axcontlem4 28912 axcontlem7 28915 axcontlem8 28916 neibastop3 36346 bj-0int 37085 ralbi12f 38150 iineq12f 38154 pmapglbx 39758 ordelordALTVD 44850 |
| Copyright terms: Public domain | W3C validator |