MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbi Structured version   Visualization version   GIF version

Theorem ralbi 3092
Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1822. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.)
Assertion
Ref Expression
ralbi (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))

Proof of Theorem ralbi
StepHypRef Expression
1 biimp 214 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21ral2imi 3081 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
3 biimpr 219 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43ral2imi 3081 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑))
52, 4impbid 211 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ral 3068
This theorem is referenced by:  rexbiOLD  3170  uniiunlem  4015  iineq2  4941  reusv2lem5  5320  ralrnmptw  6952  ralrnmpt  6954  f1mpt  7115  mpo2eqb  7384  ralrnmpo  7390  rankonidlem  9517  acni2  9733  kmlem8  9844  kmlem13  9849  fimaxre3  11851  cau3lem  14994  rlim2  15133  rlim0  15145  rlim0lt  15146  catpropd  17335  funcres2b  17528  ulmss  25461  lgamgulmlem6  26088  colinearalg  27181  axpasch  27212  axcontlem2  27236  axcontlem4  27238  axcontlem7  27241  axcontlem8  27242  naddcom  33762  naddid1  33763  neibastop3  34478  bj-0int  35199  ralbi12f  36245  iineq12f  36249  pmapglbx  37710  ordelordALTVD  42376
  Copyright terms: Public domain W3C validator