| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1818. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | ral2imi 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: uniiunlem 4046 iineq2 4972 reusv2lem5 5352 ralrnmptw 7048 ralrnmpt 7050 f1mpt 7218 mpo2eqb 7501 ralrnmpo 7508 naddcom 8623 naddrid 8624 naddass 8637 rankonidlem 9757 acni2 9975 kmlem8 10087 kmlem13 10092 fimaxre3 12105 cau3lem 15297 rlim2 15438 rlim0 15450 rlim0lt 15451 catpropd 17646 funcres2b 17835 ulmss 26282 lgamgulmlem6 26920 colinearalg 28813 axpasch 28844 axcontlem2 28868 axcontlem4 28870 axcontlem7 28873 axcontlem8 28874 neibastop3 36323 bj-0int 37062 ralbi12f 38127 iineq12f 38131 pmapglbx 39736 ordelordALTVD 44829 |
| Copyright terms: Public domain | W3C validator |