![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version |
Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1814. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
4 | 3 | ral2imi 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-ral 3059 |
This theorem is referenced by: rexbiOLD 3102 uniiunlem 4096 iineq2 5016 reusv2lem5 5407 ralrnmptw 7113 ralrnmpt 7115 f1mpt 7280 mpo2eqb 7564 ralrnmpo 7571 naddcom 8718 naddrid 8719 naddass 8732 rankonidlem 9865 acni2 10083 kmlem8 10195 kmlem13 10200 fimaxre3 12211 cau3lem 15389 rlim2 15528 rlim0 15540 rlim0lt 15541 catpropd 17753 funcres2b 17947 ulmss 26454 lgamgulmlem6 27091 colinearalg 28939 axpasch 28970 axcontlem2 28994 axcontlem4 28996 axcontlem7 28999 axcontlem8 29000 neibastop3 36344 bj-0int 37083 ralbi12f 38146 iineq12f 38150 pmapglbx 39751 ordelordALTVD 44864 |
Copyright terms: Public domain | W3C validator |