![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version |
Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1816. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
4 | 3 | ral2imi 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: rexbiOLD 3111 uniiunlem 4110 iineq2 5035 reusv2lem5 5420 ralrnmptw 7128 ralrnmpt 7130 f1mpt 7298 mpo2eqb 7582 ralrnmpo 7589 naddcom 8738 naddrid 8739 naddass 8752 rankonidlem 9897 acni2 10115 kmlem8 10227 kmlem13 10232 fimaxre3 12241 cau3lem 15403 rlim2 15542 rlim0 15554 rlim0lt 15555 catpropd 17767 funcres2b 17961 ulmss 26458 lgamgulmlem6 27095 colinearalg 28943 axpasch 28974 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 axcontlem8 29004 neibastop3 36328 bj-0int 37067 ralbi12f 38120 iineq12f 38124 pmapglbx 39726 ordelordALTVD 44838 |
Copyright terms: Public domain | W3C validator |