Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version |
Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1822. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 214 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | biimpr 219 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
4 | 3 | ral2imi 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
5 | 2, 4 | impbid 211 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: rexbiOLD 3170 uniiunlem 4015 iineq2 4941 reusv2lem5 5320 ralrnmptw 6952 ralrnmpt 6954 f1mpt 7115 mpo2eqb 7384 ralrnmpo 7390 rankonidlem 9517 acni2 9733 kmlem8 9844 kmlem13 9849 fimaxre3 11851 cau3lem 14994 rlim2 15133 rlim0 15145 rlim0lt 15146 catpropd 17335 funcres2b 17528 ulmss 25461 lgamgulmlem6 26088 colinearalg 27181 axpasch 27212 axcontlem2 27236 axcontlem4 27238 axcontlem7 27241 axcontlem8 27242 naddcom 33762 naddid1 33763 neibastop3 34478 bj-0int 35199 ralbi12f 36245 iineq12f 36249 pmapglbx 37710 ordelordALTVD 42376 |
Copyright terms: Public domain | W3C validator |