![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbid | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. See raleqbidv 3344 for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
raleqbid.0 | ⊢ Ⅎ𝑥𝜑 |
raleqbid.1 | ⊢ Ⅎ𝑥𝐴 |
raleqbid.2 | ⊢ Ⅎ𝑥𝐵 |
raleqbid.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbid.4 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbid.3 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleqbid.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | raleqbid.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | raleqf 3351 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
6 | raleqbid.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
7 | raleqbid.4 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
8 | 6, 7 | ralbid 3271 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
9 | 5, 8 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1780 Ⅎwnfc 2888 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |