Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbid Structured version   Visualization version   GIF version

Theorem raleqbid 3400
 Description: Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
raleqbid.0 𝑥𝜑
raleqbid.1 𝑥𝐴
raleqbid.2 𝑥𝐵
raleqbid.3 (𝜑𝐴 = 𝐵)
raleqbid.4 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
raleqbid (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))

Proof of Theorem raleqbid
StepHypRef Expression
1 raleqbid.3 . . 3 (𝜑𝐴 = 𝐵)
2 raleqbid.1 . . . 4 𝑥𝐴
3 raleqbid.2 . . . 4 𝑥𝐵
42, 3raleqf 3382 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
51, 4syl 17 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
6 raleqbid.0 . . 3 𝑥𝜑
7 raleqbid.4 . . 3 (𝜑 → (𝜓𝜒))
86, 7ralbid 3219 . 2 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑥𝐵 𝜒))
95, 8bitrd 282 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538  Ⅎwnf 1785  Ⅎwnfc 2958  ∀wral 3126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator