MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbid Structured version   Visualization version   GIF version

Theorem raleqbid 3334
Description: Equality deduction for restricted universal quantifier. See raleqbidv 3321 for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
raleqbid.0 𝑥𝜑
raleqbid.1 𝑥𝐴
raleqbid.2 𝑥𝐵
raleqbid.3 (𝜑𝐴 = 𝐵)
raleqbid.4 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
raleqbid (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))

Proof of Theorem raleqbid
StepHypRef Expression
1 raleqbid.3 . . 3 (𝜑𝐴 = 𝐵)
2 raleqbid.1 . . . 4 𝑥𝐴
3 raleqbid.2 . . . 4 𝑥𝐵
42, 3raleqf 3331 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
51, 4syl 17 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
6 raleqbid.0 . . 3 𝑥𝜑
7 raleqbid.4 . . 3 (𝜑 → (𝜓𝜒))
86, 7ralbid 3251 . 2 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑥𝐵 𝜒))
95, 8bitrd 279 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wnf 1783  wnfc 2877  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator