| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbid | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. See rexeqbidv 3330 for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| raleqbid.0 | ⊢ Ⅎ𝑥𝜑 |
| raleqbid.1 | ⊢ Ⅎ𝑥𝐴 |
| raleqbid.2 | ⊢ Ⅎ𝑥𝐵 |
| raleqbid.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbid.4 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbid | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbid.3 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleqbid.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | raleqbid.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | rexeqf 3340 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| 6 | raleqbid.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 7 | raleqbid.4 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 8 | 6, 7 | rexbid 3260 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| 9 | 5, 8 | bitrd 279 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2884 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: iuneq12df 4999 |
| Copyright terms: Public domain | W3C validator |