Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqbid | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
raleqbid.0 | ⊢ Ⅎ𝑥𝜑 |
raleqbid.1 | ⊢ Ⅎ𝑥𝐴 |
raleqbid.2 | ⊢ Ⅎ𝑥𝐵 |
raleqbid.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbid.4 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbid | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbid.3 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleqbid.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | raleqbid.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | rexeqf 3333 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
6 | raleqbid.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
7 | raleqbid.4 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
8 | 6, 7 | rexbid 3253 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
9 | 5, 8 | bitrd 278 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1786 Ⅎwnfc 2887 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rex 3070 |
This theorem is referenced by: iuneq12df 4950 |
Copyright terms: Public domain | W3C validator |