|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexeqbid | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. See rexeqbidv 3346 for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017.) | 
| Ref | Expression | 
|---|---|
| raleqbid.0 | ⊢ Ⅎ𝑥𝜑 | 
| raleqbid.1 | ⊢ Ⅎ𝑥𝐴 | 
| raleqbid.2 | ⊢ Ⅎ𝑥𝐵 | 
| raleqbid.3 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| raleqbid.4 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| rexeqbid | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | raleqbid.3 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleqbid.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | raleqbid.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | rexeqf 3353 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | 
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | 
| 6 | raleqbid.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 7 | raleqbid.4 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 8 | 6, 7 | rexbid 3273 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | 
| 9 | 5, 8 | bitrd 279 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Ⅎwnf 1782 Ⅎwnfc 2889 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: iuneq12df 5017 | 
| Copyright terms: Public domain | W3C validator |