MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbid Structured version   Visualization version   GIF version

Theorem ralbid 3248
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3156. (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1 𝑥𝜑
ralbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralbid (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbid
StepHypRef Expression
1 ralbid.1 . 2 𝑥𝜑
2 ralbid.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralbida 3246 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  raleqbid  3329  sbcralt  3832  sbcrext  3833  riota5f  7354  zfrep6  7913  cnfcom3clem  9636  cplem2  9821  infxpenc2lem2  9951  acnlem  9979  lble  12113  fsuppmapnn0fiubex  13935  nosupbnd1  27660  noinfbnd1  27675  chirred  32375  rspc2daf  32446  aciunf1lem  32637  indexa  37721  riotasvd  38943  cdlemk36  40901  modelaxreplem3  44964  choicefi  45188  axccdom  45210  rexabsle  45409  infxrunb3rnmpt  45418  uzublem  45420  climf  45614  climf2  45658  limsupubuzlem  45704  cncficcgt0  45880  stoweidlem16  46008  stoweidlem18  46010  stoweidlem21  46013  stoweidlem29  46021  stoweidlem31  46023  stoweidlem36  46028  stoweidlem41  46033  stoweidlem44  46036  stoweidlem45  46037  stoweidlem51  46043  stoweidlem55  46047  stoweidlem59  46051  stoweidlem60  46052  issmfgelem  46761  smfpimcclem  46799  sprsymrelf  47490
  Copyright terms: Public domain W3C validator