| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3157. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | ralbida 3249 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3046 |
| This theorem is referenced by: raleqbid 3334 sbcralt 3838 sbcrext 3839 riota5f 7375 zfrep6 7936 cnfcom3clem 9665 cplem2 9850 infxpenc2lem2 9980 acnlem 10008 lble 12142 fsuppmapnn0fiubex 13964 nosupbnd1 27633 noinfbnd1 27648 chirred 32331 rspc2daf 32402 aciunf1lem 32593 indexa 37734 riotasvd 38956 cdlemk36 40914 modelaxreplem3 44977 choicefi 45201 axccdom 45223 rexabsle 45422 infxrunb3rnmpt 45431 uzublem 45433 climf 45627 climf2 45671 limsupubuzlem 45717 cncficcgt0 45893 stoweidlem16 46021 stoweidlem18 46023 stoweidlem21 46026 stoweidlem29 46034 stoweidlem31 46036 stoweidlem36 46041 stoweidlem41 46046 stoweidlem44 46049 stoweidlem45 46050 stoweidlem51 46056 stoweidlem55 46060 stoweidlem59 46064 stoweidlem60 46065 issmfgelem 46774 smfpimcclem 46812 sprsymrelf 47500 |
| Copyright terms: Public domain | W3C validator |