MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbid Structured version   Visualization version   GIF version

Theorem ralbid 3251
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3157. (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1 𝑥𝜑
ralbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralbid (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbid
StepHypRef Expression
1 ralbid.1 . 2 𝑥𝜑
2 ralbid.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralbida 3249 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3046
This theorem is referenced by:  raleqbid  3334  sbcralt  3838  sbcrext  3839  riota5f  7375  zfrep6  7936  cnfcom3clem  9665  cplem2  9850  infxpenc2lem2  9980  acnlem  10008  lble  12142  fsuppmapnn0fiubex  13964  nosupbnd1  27633  noinfbnd1  27648  chirred  32331  rspc2daf  32402  aciunf1lem  32593  indexa  37734  riotasvd  38956  cdlemk36  40914  modelaxreplem3  44977  choicefi  45201  axccdom  45223  rexabsle  45422  infxrunb3rnmpt  45431  uzublem  45433  climf  45627  climf2  45671  limsupubuzlem  45717  cncficcgt0  45893  stoweidlem16  46021  stoweidlem18  46023  stoweidlem21  46026  stoweidlem29  46034  stoweidlem31  46036  stoweidlem36  46041  stoweidlem41  46046  stoweidlem44  46049  stoweidlem45  46050  stoweidlem51  46056  stoweidlem55  46060  stoweidlem59  46064  stoweidlem60  46065  issmfgelem  46774  smfpimcclem  46812  sprsymrelf  47500
  Copyright terms: Public domain W3C validator