![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3184. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3276 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-ral 3068 |
This theorem is referenced by: raleqbid 3364 sbcralt 3894 sbcrext 3895 riota5f 7433 zfrep6 7995 cnfcom3clem 9774 cplem2 9959 infxpenc2lem2 10089 acnlem 10117 lble 12247 fsuppmapnn0fiubex 14043 nosupbnd1 27777 noinfbnd1 27792 chirred 32427 rspc2daf 32495 aciunf1lem 32680 indexa 37693 riotasvd 38912 cdlemk36 40870 choicefi 45107 axccdom 45129 rexabsle 45334 infxrunb3rnmpt 45343 uzublem 45345 climf 45543 climf2 45587 limsupubuzlem 45633 cncficcgt0 45809 stoweidlem16 45937 stoweidlem18 45939 stoweidlem21 45942 stoweidlem29 45950 stoweidlem31 45952 stoweidlem36 45957 stoweidlem41 45962 stoweidlem44 45965 stoweidlem45 45966 stoweidlem51 45972 stoweidlem55 45976 stoweidlem59 45980 stoweidlem60 45981 issmfgelem 46690 smfpimcclem 46728 sprsymrelf 47369 |
Copyright terms: Public domain | W3C validator |