Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3156 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-ral 3068 |
This theorem is referenced by: raleqbid 3343 sbcralt 3801 sbcrext 3802 riota5f 7241 zfrep6 7771 cnfcom3clem 9393 cplem2 9579 infxpenc2lem2 9707 acnlem 9735 lble 11857 fsuppmapnn0fiubex 13640 chirred 30658 rspc2daf 30717 aciunf1lem 30901 nosupbnd1 33844 noinfbnd1 33859 indexa 35818 riotasvd 36897 cdlemk36 38854 choicefi 42629 axccdom 42651 rexabsle 42849 infxrunb3rnmpt 42858 uzublem 42860 climf 43053 climf2 43097 limsupubuzlem 43143 cncficcgt0 43319 stoweidlem16 43447 stoweidlem18 43449 stoweidlem21 43452 stoweidlem29 43460 stoweidlem31 43462 stoweidlem36 43467 stoweidlem41 43472 stoweidlem44 43475 stoweidlem45 43476 stoweidlem51 43482 stoweidlem55 43486 stoweidlem59 43490 stoweidlem60 43491 issmfgelem 44191 smfpimcclem 44227 sprsymrelf 44835 |
Copyright terms: Public domain | W3C validator |