| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3152. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | ralbida 3240 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: raleqbid 3321 sbcralt 3824 sbcrext 3825 riota5f 7334 zfrep6 7890 cnfcom3clem 9601 cplem2 9786 infxpenc2lem2 9914 acnlem 9942 lble 12077 fsuppmapnn0fiubex 13899 nosupbnd1 27624 noinfbnd1 27639 chirred 32343 rspc2daf 32414 aciunf1lem 32613 indexa 37733 riotasvd 38955 cdlemk36 40912 modelaxreplem3 44974 choicefi 45198 axccdom 45220 rexabsle 45418 infxrunb3rnmpt 45427 uzublem 45429 climf 45623 climf2 45667 limsupubuzlem 45713 cncficcgt0 45889 stoweidlem16 46017 stoweidlem18 46019 stoweidlem21 46022 stoweidlem29 46030 stoweidlem31 46032 stoweidlem36 46037 stoweidlem41 46042 stoweidlem44 46045 stoweidlem45 46046 stoweidlem51 46052 stoweidlem55 46056 stoweidlem59 46060 stoweidlem60 46061 issmfgelem 46770 smfpimcclem 46808 sprsymrelf 47499 |
| Copyright terms: Public domain | W3C validator |