![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3178. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3268 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-ral 3063 |
This theorem is referenced by: raleqbid 3353 sbcralt 3867 sbcrext 3868 riota5f 7394 zfrep6 7941 cnfcom3clem 9700 cplem2 9885 infxpenc2lem2 10015 acnlem 10043 lble 12166 fsuppmapnn0fiubex 13957 nosupbnd1 27217 noinfbnd1 27232 chirred 31648 rspc2daf 31708 aciunf1lem 31887 indexa 36601 riotasvd 37826 cdlemk36 39784 choicefi 43899 axccdom 43921 rexabsle 44129 infxrunb3rnmpt 44138 uzublem 44140 climf 44338 climf2 44382 limsupubuzlem 44428 cncficcgt0 44604 stoweidlem16 44732 stoweidlem18 44734 stoweidlem21 44737 stoweidlem29 44745 stoweidlem31 44747 stoweidlem36 44752 stoweidlem41 44757 stoweidlem44 44760 stoweidlem45 44761 stoweidlem51 44767 stoweidlem55 44771 stoweidlem59 44775 stoweidlem60 44776 issmfgelem 45485 smfpimcclem 45523 sprsymrelf 46163 |
Copyright terms: Public domain | W3C validator |