| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3156. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | ralbida 3246 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: raleqbid 3329 sbcralt 3832 sbcrext 3833 riota5f 7354 zfrep6 7913 cnfcom3clem 9636 cplem2 9821 infxpenc2lem2 9951 acnlem 9979 lble 12113 fsuppmapnn0fiubex 13935 nosupbnd1 27660 noinfbnd1 27675 chirred 32375 rspc2daf 32446 aciunf1lem 32637 indexa 37721 riotasvd 38943 cdlemk36 40901 modelaxreplem3 44964 choicefi 45188 axccdom 45210 rexabsle 45409 infxrunb3rnmpt 45418 uzublem 45420 climf 45614 climf2 45658 limsupubuzlem 45704 cncficcgt0 45880 stoweidlem16 46008 stoweidlem18 46010 stoweidlem21 46013 stoweidlem29 46021 stoweidlem31 46023 stoweidlem36 46028 stoweidlem41 46033 stoweidlem44 46036 stoweidlem45 46037 stoweidlem51 46043 stoweidlem55 46047 stoweidlem59 46051 stoweidlem60 46052 issmfgelem 46761 smfpimcclem 46799 sprsymrelf 47490 |
| Copyright terms: Public domain | W3C validator |