MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbid Structured version   Visualization version   GIF version

Theorem ralbid 3248
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3156. (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1 𝑥𝜑
ralbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralbid (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbid
StepHypRef Expression
1 ralbid.1 . 2 𝑥𝜑
2 ralbid.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralbida 3246 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  raleqbid  3329  sbcralt  3832  sbcrext  3833  riota5f  7354  zfrep6  7913  cnfcom3clem  9634  cplem2  9819  infxpenc2lem2  9949  acnlem  9977  lble  12111  fsuppmapnn0fiubex  13933  nosupbnd1  27659  noinfbnd1  27674  chirred  32374  rspc2daf  32445  aciunf1lem  32636  indexa  37720  riotasvd  38942  cdlemk36  40900  modelaxreplem3  44963  choicefi  45187  axccdom  45209  rexabsle  45408  infxrunb3rnmpt  45417  uzublem  45419  climf  45613  climf2  45657  limsupubuzlem  45703  cncficcgt0  45879  stoweidlem16  46007  stoweidlem18  46009  stoweidlem21  46012  stoweidlem29  46020  stoweidlem31  46022  stoweidlem36  46027  stoweidlem41  46032  stoweidlem44  46035  stoweidlem45  46036  stoweidlem51  46042  stoweidlem55  46046  stoweidlem59  46050  stoweidlem60  46051  issmfgelem  46760  smfpimcclem  46798  sprsymrelf  47489
  Copyright terms: Public domain W3C validator