![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3176. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3268 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1780 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-ral 3060 |
This theorem is referenced by: raleqbid 3354 sbcralt 3881 sbcrext 3882 riota5f 7416 zfrep6 7978 cnfcom3clem 9743 cplem2 9928 infxpenc2lem2 10058 acnlem 10086 lble 12218 fsuppmapnn0fiubex 14030 nosupbnd1 27774 noinfbnd1 27789 chirred 32424 rspc2daf 32495 aciunf1lem 32679 indexa 37720 riotasvd 38938 cdlemk36 40896 modelaxreplem3 44945 choicefi 45143 axccdom 45165 rexabsle 45369 infxrunb3rnmpt 45378 uzublem 45380 climf 45578 climf2 45622 limsupubuzlem 45668 cncficcgt0 45844 stoweidlem16 45972 stoweidlem18 45974 stoweidlem21 45977 stoweidlem29 45985 stoweidlem31 45987 stoweidlem36 45992 stoweidlem41 45997 stoweidlem44 46000 stoweidlem45 46001 stoweidlem51 46007 stoweidlem55 46011 stoweidlem59 46015 stoweidlem60 46016 issmfgelem 46725 smfpimcclem 46763 sprsymrelf 47420 |
Copyright terms: Public domain | W3C validator |