Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3158 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1789 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-nf 1790 df-ral 3070 |
This theorem is referenced by: raleqbid 3350 sbcralt 3809 sbcrext 3810 riota5f 7254 zfrep6 7784 cnfcom3clem 9424 cplem2 9632 infxpenc2lem2 9760 acnlem 9788 lble 11910 fsuppmapnn0fiubex 13693 chirred 30736 rspc2daf 30795 aciunf1lem 30978 nosupbnd1 33896 noinfbnd1 33911 indexa 35870 riotasvd 36949 cdlemk36 38906 choicefi 42693 axccdom 42715 rexabsle 42913 infxrunb3rnmpt 42922 uzublem 42924 climf 43117 climf2 43161 limsupubuzlem 43207 cncficcgt0 43383 stoweidlem16 43511 stoweidlem18 43513 stoweidlem21 43516 stoweidlem29 43524 stoweidlem31 43526 stoweidlem36 43531 stoweidlem41 43536 stoweidlem44 43539 stoweidlem45 43540 stoweidlem51 43546 stoweidlem55 43550 stoweidlem59 43554 stoweidlem60 43555 issmfgelem 44255 smfpimcclem 44291 sprsymrelf 44899 |
Copyright terms: Public domain | W3C validator |