Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3159 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 |
This theorem is referenced by: raleqbid 3352 sbcralt 3805 sbcrext 3806 riota5f 7261 zfrep6 7797 cnfcom3clem 9463 cplem2 9648 infxpenc2lem2 9776 acnlem 9804 lble 11927 fsuppmapnn0fiubex 13712 chirred 30757 rspc2daf 30816 aciunf1lem 30999 nosupbnd1 33917 noinfbnd1 33932 indexa 35891 riotasvd 36970 cdlemk36 38927 choicefi 42740 axccdom 42762 rexabsle 42959 infxrunb3rnmpt 42968 uzublem 42970 climf 43163 climf2 43207 limsupubuzlem 43253 cncficcgt0 43429 stoweidlem16 43557 stoweidlem18 43559 stoweidlem21 43562 stoweidlem29 43570 stoweidlem31 43572 stoweidlem36 43577 stoweidlem41 43582 stoweidlem44 43585 stoweidlem45 43586 stoweidlem51 43592 stoweidlem55 43596 stoweidlem59 43600 stoweidlem60 43601 issmfgelem 44304 smfpimcclem 44340 sprsymrelf 44947 |
Copyright terms: Public domain | W3C validator |