![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3178. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3268 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-ral 3063 |
This theorem is referenced by: raleqbid 3353 sbcralt 3867 sbcrext 3868 riota5f 7394 zfrep6 7941 cnfcom3clem 9700 cplem2 9885 infxpenc2lem2 10015 acnlem 10043 lble 12166 fsuppmapnn0fiubex 13957 nosupbnd1 27217 noinfbnd1 27232 chirred 31679 rspc2daf 31739 aciunf1lem 31918 indexa 36649 riotasvd 37874 cdlemk36 39832 choicefi 43947 axccdom 43969 rexabsle 44177 infxrunb3rnmpt 44186 uzublem 44188 climf 44386 climf2 44430 limsupubuzlem 44476 cncficcgt0 44652 stoweidlem16 44780 stoweidlem18 44782 stoweidlem21 44785 stoweidlem29 44793 stoweidlem31 44795 stoweidlem36 44800 stoweidlem41 44805 stoweidlem44 44808 stoweidlem45 44809 stoweidlem51 44815 stoweidlem55 44819 stoweidlem59 44823 stoweidlem60 44824 issmfgelem 45533 smfpimcclem 45571 sprsymrelf 46211 |
Copyright terms: Public domain | W3C validator |