![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3176. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | ralbida 3266 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1784 ∈ wcel 2105 ∀wral 3060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-nf 1785 df-ral 3061 |
This theorem is referenced by: raleqbid 3351 sbcralt 3866 sbcrext 3867 riota5f 7397 zfrep6 7945 cnfcom3clem 9704 cplem2 9889 infxpenc2lem2 10019 acnlem 10047 lble 12171 fsuppmapnn0fiubex 13962 nosupbnd1 27454 noinfbnd1 27469 chirred 31916 rspc2daf 31976 aciunf1lem 32155 indexa 36905 riotasvd 38130 cdlemk36 40088 choicefi 44198 axccdom 44220 rexabsle 44428 infxrunb3rnmpt 44437 uzublem 44439 climf 44637 climf2 44681 limsupubuzlem 44727 cncficcgt0 44903 stoweidlem16 45031 stoweidlem18 45033 stoweidlem21 45036 stoweidlem29 45044 stoweidlem31 45046 stoweidlem36 45051 stoweidlem41 45056 stoweidlem44 45059 stoweidlem45 45060 stoweidlem51 45066 stoweidlem55 45070 stoweidlem59 45074 stoweidlem60 45075 issmfgelem 45784 smfpimcclem 45822 sprsymrelf 46462 |
Copyright terms: Public domain | W3C validator |