| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3163. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | ralbida 3253 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3052 |
| This theorem is referenced by: raleqbid 3335 sbcralt 3847 sbcrext 3848 riota5f 7390 zfrep6 7953 cnfcom3clem 9719 cplem2 9904 infxpenc2lem2 10034 acnlem 10062 lble 12194 fsuppmapnn0fiubex 14010 nosupbnd1 27678 noinfbnd1 27693 chirred 32376 rspc2daf 32447 aciunf1lem 32640 indexa 37757 riotasvd 38974 cdlemk36 40932 modelaxreplem3 45005 choicefi 45224 axccdom 45246 rexabsle 45446 infxrunb3rnmpt 45455 uzublem 45457 climf 45651 climf2 45695 limsupubuzlem 45741 cncficcgt0 45917 stoweidlem16 46045 stoweidlem18 46047 stoweidlem21 46050 stoweidlem29 46058 stoweidlem31 46060 stoweidlem36 46065 stoweidlem41 46070 stoweidlem44 46073 stoweidlem45 46074 stoweidlem51 46080 stoweidlem55 46084 stoweidlem59 46088 stoweidlem60 46089 issmfgelem 46798 smfpimcclem 46836 sprsymrelf 47509 |
| Copyright terms: Public domain | W3C validator |