| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3155. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | ralbida 3243 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 |
| This theorem is referenced by: raleqbid 3324 sbcralt 3818 sbcrext 3819 riota5f 7331 zfrep6 7887 cnfcom3clem 9595 cplem2 9783 infxpenc2lem2 9911 acnlem 9939 lble 12074 fsuppmapnn0fiubex 13899 nosupbnd1 27653 noinfbnd1 27668 chirred 32375 rspc2daf 32445 aciunf1lem 32644 indexa 37772 riotasvd 39054 cdlemk36 41011 modelaxreplem3 45072 choicefi 45296 axccdom 45318 rexabsle 45516 infxrunb3rnmpt 45525 uzublem 45527 climf 45721 climf2 45763 limsupubuzlem 45809 cncficcgt0 45985 stoweidlem16 46113 stoweidlem18 46115 stoweidlem21 46118 stoweidlem29 46126 stoweidlem31 46128 stoweidlem36 46133 stoweidlem41 46138 stoweidlem44 46141 stoweidlem45 46142 stoweidlem51 46148 stoweidlem55 46152 stoweidlem59 46156 stoweidlem60 46157 issmfgelem 46866 smfpimcclem 46904 sprsymrelf 47594 |
| Copyright terms: Public domain | W3C validator |