| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3156. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | ralbida 3246 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: raleqbid 3329 sbcralt 3832 sbcrext 3833 riota5f 7354 zfrep6 7913 cnfcom3clem 9634 cplem2 9819 infxpenc2lem2 9949 acnlem 9977 lble 12111 fsuppmapnn0fiubex 13933 nosupbnd1 27659 noinfbnd1 27674 chirred 32374 rspc2daf 32445 aciunf1lem 32636 indexa 37720 riotasvd 38942 cdlemk36 40900 modelaxreplem3 44963 choicefi 45187 axccdom 45209 rexabsle 45408 infxrunb3rnmpt 45417 uzublem 45419 climf 45613 climf2 45657 limsupubuzlem 45703 cncficcgt0 45879 stoweidlem16 46007 stoweidlem18 46009 stoweidlem21 46012 stoweidlem29 46020 stoweidlem31 46022 stoweidlem36 46027 stoweidlem41 46032 stoweidlem44 46035 stoweidlem45 46036 stoweidlem51 46042 stoweidlem55 46046 stoweidlem59 46050 stoweidlem60 46051 issmfgelem 46760 smfpimcclem 46798 sprsymrelf 47489 |
| Copyright terms: Public domain | W3C validator |