| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > raleqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| raleqd.a | ⊢ Ⅎ𝑥𝐴 |
| raleqd.b | ⊢ Ⅎ𝑥𝐵 |
| raleqd.e | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| raleqd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqd.e | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleqd.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | raleqd.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | raleqf 3321 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Ⅎwnfc 2879 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 |
| This theorem is referenced by: allbutfiinf 45517 |
| Copyright terms: Public domain | W3C validator |