Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > raleqd | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
raleqd.a | ⊢ Ⅎ𝑥𝐴 |
raleqd.b | ⊢ Ⅎ𝑥𝐵 |
raleqd.e | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
raleqd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqd.e | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleqd.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | raleqd.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | raleqf 3332 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnfc 2887 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 |
This theorem is referenced by: allbutfiinf 42960 |
Copyright terms: Public domain | W3C validator |