Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  raleqd Structured version   Visualization version   GIF version

Theorem raleqd 45039
Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
raleqd.a 𝑥𝐴
raleqd.b 𝑥𝐵
raleqd.e (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
raleqd (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))

Proof of Theorem raleqd
StepHypRef Expression
1 raleqd.e . 2 (𝜑𝐴 = 𝐵)
2 raleqd.a . . 3 𝑥𝐴
3 raleqd.b . . 3 𝑥𝐵
42, 3raleqf 3361 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
51, 4syl 17 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wnfc 2893  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068
This theorem is referenced by:  allbutfiinf  45335
  Copyright terms: Public domain W3C validator