Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfiinf Structured version   Visualization version   GIF version

Theorem allbutfiinf 41071
Description: Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
allbutfiinf.z 𝑍 = (ℤ𝑀)
allbutfiinf.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
allbutfiinf.x (𝜑𝑋𝐴)
allbutfiinf.n 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
Assertion
Ref Expression
allbutfiinf (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Distinct variable groups:   𝐵,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)   𝐴(𝑚,𝑛)   𝐵(𝑚)   𝑀(𝑚,𝑛)   𝑁(𝑚,𝑛)

Proof of Theorem allbutfiinf
StepHypRef Expression
1 ssrab2 3942 . . 3 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ 𝑍
2 allbutfiinf.n . . . . 5 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
32a1i 11 . . . 4 (𝜑𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ))
4 allbutfiinf.z . . . . . . 7 𝑍 = (ℤ𝑀)
51, 4sseqtri 3889 . . . . . 6 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀)
65a1i 11 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀))
7 allbutfiinf.x . . . . . . 7 (𝜑𝑋𝐴)
8 allbutfiinf.a . . . . . . . 8 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
94, 8allbutfi 41041 . . . . . . 7 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
107, 9sylib 210 . . . . . 6 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
11 nfrab1 3318 . . . . . . . . 9 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
12 nfcv 2926 . . . . . . . . 9 𝑛
1311, 12nfne 3064 . . . . . . . 8 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅
14 rabid 3311 . . . . . . . . . . . 12 (𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1514bicomi 216 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) ↔ 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1615biimpi 208 . . . . . . . . . 10 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1716ne0d 4182 . . . . . . . . 9 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
1817ex 405 . . . . . . . 8 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
1913, 18rexlimi 3252 . . . . . . 7 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
2019a1i 11 . . . . . 6 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
2110, 20mpd 15 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
22 infssuzcl 12139 . . . . 5 (({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀) ∧ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅) → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
236, 21, 22syl2anc 576 . . . 4 (𝜑 → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
243, 23eqeltrd 2860 . . 3 (𝜑𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
251, 24sseldi 3852 . 2 (𝜑𝑁𝑍)
26 nfcv 2926 . . . . . . . 8 𝑛
27 nfcv 2926 . . . . . . . 8 𝑛 <
2811, 26, 27nfinf 8733 . . . . . . 7 𝑛inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
292, 28nfcxfr 2924 . . . . . 6 𝑛𝑁
30 nfcv 2926 . . . . . 6 𝑛𝑍
31 nfcv 2926 . . . . . . . 8 𝑛
3231, 29nffv 6503 . . . . . . 7 𝑛(ℤ𝑁)
33 nfv 1873 . . . . . . 7 𝑛 𝑋𝐵
3432, 33nfral 3168 . . . . . 6 𝑛𝑚 ∈ (ℤ𝑁)𝑋𝐵
35 nfcv 2926 . . . . . . 7 𝑚(ℤ𝑛)
36 nfcv 2926 . . . . . . . 8 𝑚
37 nfra1 3163 . . . . . . . . . . 11 𝑚𝑚 ∈ (ℤ𝑛)𝑋𝐵
38 nfcv 2926 . . . . . . . . . . 11 𝑚𝑍
3937, 38nfrab 3319 . . . . . . . . . 10 𝑚{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
40 nfcv 2926 . . . . . . . . . 10 𝑚
41 nfcv 2926 . . . . . . . . . 10 𝑚 <
4239, 40, 41nfinf 8733 . . . . . . . . 9 𝑚inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
432, 42nfcxfr 2924 . . . . . . . 8 𝑚𝑁
4436, 43nffv 6503 . . . . . . 7 𝑚(ℤ𝑁)
45 fveq2 6493 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
4635, 44, 45raleqd 40773 . . . . . 6 (𝑛 = 𝑁 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4729, 30, 34, 46elrabf 3585 . . . . 5 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4847biimpi 208 . . . 4 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4948simprd 488 . . 3 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5024, 49syl 17 . 2 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5125, 50jca 504 1 (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  {crab 3086  wss 3825  c0 4173   ciun 4786   ciin 4787  cfv 6182  infcinf 8692  cr 10326   < clt 10466  cuz 12051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator