Proof of Theorem allbutfiinf
Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . 3
⊢ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ⊆ 𝑍 |
2 | | allbutfiinf.n |
. . . . 5
⊢ 𝑁 = inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑁 = inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < )) |
4 | | allbutfiinf.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | 1, 4 | sseqtri 3953 |
. . . . . 6
⊢ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ⊆
(ℤ≥‘𝑀) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ⊆
(ℤ≥‘𝑀)) |
7 | | allbutfiinf.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
8 | | allbutfiinf.a |
. . . . . . . 8
⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐵 |
9 | 4, 8 | allbutfi 42823 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
10 | 7, 9 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
11 | | nfrab1 3310 |
. . . . . . . . 9
⊢
Ⅎ𝑛{𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} |
12 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛∅ |
13 | 11, 12 | nfne 3044 |
. . . . . . . 8
⊢
Ⅎ𝑛{𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅ |
14 | | rabid 3304 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ↔ (𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
15 | 14 | bicomi 223 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) ↔ 𝑛 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}) |
16 | 15 | biimpi 215 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → 𝑛 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}) |
17 | 16 | ne0d 4266 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅) |
18 | 17 | ex 412 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅)) |
19 | 13, 18 | rexlimi 3243 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝑍 ∀𝑚 ∈
(ℤ≥‘𝑛)𝑋 ∈ 𝐵 → {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅) |
20 | 19 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅)) |
21 | 10, 20 | mpd 15 |
. . . . 5
⊢ (𝜑 → {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅) |
22 | | infssuzcl 12601 |
. . . . 5
⊢ (({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ⊆
(ℤ≥‘𝑀) ∧ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ≠ ∅) → inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}) |
23 | 6, 21, 22 | syl2anc 583 |
. . . 4
⊢ (𝜑 → inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}) |
24 | 3, 23 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → 𝑁 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}) |
25 | 1, 24 | sselid 3915 |
. 2
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
26 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛ℝ |
27 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛
< |
28 | 11, 26, 27 | nfinf 9171 |
. . . . . . 7
⊢
Ⅎ𝑛inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) |
29 | 2, 28 | nfcxfr 2904 |
. . . . . 6
⊢
Ⅎ𝑛𝑁 |
30 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑛𝑍 |
31 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛ℤ≥ |
32 | 31, 29 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑛(ℤ≥‘𝑁) |
33 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑛 𝑋 ∈ 𝐵 |
34 | 32, 33 | nfralw 3149 |
. . . . . 6
⊢
Ⅎ𝑛∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵 |
35 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑚(ℤ≥‘𝑛) |
36 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑚ℤ≥ |
37 | | nfra1 3142 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 |
38 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚𝑍 |
39 | 37, 38 | nfrabw 3311 |
. . . . . . . . . 10
⊢
Ⅎ𝑚{𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} |
40 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑚ℝ |
41 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑚
< |
42 | 39, 40, 41 | nfinf 9171 |
. . . . . . . . 9
⊢
Ⅎ𝑚inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) |
43 | 2, 42 | nfcxfr 2904 |
. . . . . . . 8
⊢
Ⅎ𝑚𝑁 |
44 | 36, 43 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑚(ℤ≥‘𝑁) |
45 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑁)) |
46 | 35, 44, 45 | raleqd 42575 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) |
47 | 29, 30, 34, 46 | elrabf 3613 |
. . . . 5
⊢ (𝑁 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} ↔ (𝑁 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) |
48 | 47 | biimpi 215 |
. . . 4
⊢ (𝑁 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} → (𝑁 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) |
49 | 48 | simprd 495 |
. . 3
⊢ (𝑁 ∈ {𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵} → ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵) |
50 | 24, 49 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵) |
51 | 25, 50 | jca 511 |
1
⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) |