Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfiinf Structured version   Visualization version   GIF version

Theorem allbutfiinf 43196
Description: Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
allbutfiinf.z 𝑍 = (ℤ𝑀)
allbutfiinf.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
allbutfiinf.x (𝜑𝑋𝐴)
allbutfiinf.n 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
Assertion
Ref Expression
allbutfiinf (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Distinct variable groups:   𝐵,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)   𝐴(𝑚,𝑛)   𝐵(𝑚)   𝑀(𝑚,𝑛)   𝑁(𝑚,𝑛)

Proof of Theorem allbutfiinf
StepHypRef Expression
1 ssrab2 4024 . . 3 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ 𝑍
2 allbutfiinf.n . . . . 5 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
32a1i 11 . . . 4 (𝜑𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ))
4 allbutfiinf.z . . . . . . 7 𝑍 = (ℤ𝑀)
51, 4sseqtri 3967 . . . . . 6 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀)
65a1i 11 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀))
7 allbutfiinf.x . . . . . . 7 (𝜑𝑋𝐴)
8 allbutfiinf.a . . . . . . . 8 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
94, 8allbutfi 43169 . . . . . . 7 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
107, 9sylib 217 . . . . . 6 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
11 nfrab1 3421 . . . . . . . . 9 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
12 nfcv 2905 . . . . . . . . 9 𝑛
1311, 12nfne 3043 . . . . . . . 8 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅
14 rabid 3422 . . . . . . . . . . . 12 (𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1514bicomi 223 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) ↔ 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1615biimpi 215 . . . . . . . . . 10 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1716ne0d 4280 . . . . . . . . 9 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
1817ex 413 . . . . . . . 8 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
1913, 18rexlimi 3239 . . . . . . 7 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
2019a1i 11 . . . . . 6 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
2110, 20mpd 15 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
22 infssuzcl 12745 . . . . 5 (({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀) ∧ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅) → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
236, 21, 22syl2anc 584 . . . 4 (𝜑 → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
243, 23eqeltrd 2838 . . 3 (𝜑𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
251, 24sselid 3929 . 2 (𝜑𝑁𝑍)
26 nfcv 2905 . . . . . . . 8 𝑛
27 nfcv 2905 . . . . . . . 8 𝑛 <
2811, 26, 27nfinf 9311 . . . . . . 7 𝑛inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
292, 28nfcxfr 2903 . . . . . 6 𝑛𝑁
30 nfcv 2905 . . . . . 6 𝑛𝑍
31 nfcv 2905 . . . . . . . 8 𝑛
3231, 29nffv 6821 . . . . . . 7 𝑛(ℤ𝑁)
33 nfv 1916 . . . . . . 7 𝑛 𝑋𝐵
3432, 33nfralw 3291 . . . . . 6 𝑛𝑚 ∈ (ℤ𝑁)𝑋𝐵
35 nfcv 2905 . . . . . . 7 𝑚(ℤ𝑛)
36 nfcv 2905 . . . . . . . 8 𝑚
37 nfra1 3264 . . . . . . . . . . 11 𝑚𝑚 ∈ (ℤ𝑛)𝑋𝐵
38 nfcv 2905 . . . . . . . . . . 11 𝑚𝑍
3937, 38nfrabw 3436 . . . . . . . . . 10 𝑚{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
40 nfcv 2905 . . . . . . . . . 10 𝑚
41 nfcv 2905 . . . . . . . . . 10 𝑚 <
4239, 40, 41nfinf 9311 . . . . . . . . 9 𝑚inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
432, 42nfcxfr 2903 . . . . . . . 8 𝑚𝑁
4436, 43nffv 6821 . . . . . . 7 𝑚(ℤ𝑁)
45 fveq2 6811 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
4635, 44, 45raleqd 42908 . . . . . 6 (𝑛 = 𝑁 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4729, 30, 34, 46elrabf 3630 . . . . 5 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4847biimpi 215 . . . 4 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4948simprd 496 . . 3 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5024, 49syl 17 . 2 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5125, 50jca 512 1 (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  wral 3062  wrex 3071  {crab 3404  wss 3897  c0 4267   ciun 4937   ciin 4938  cfv 6465  infcinf 9270  cr 10943   < clt 11082  cuz 12655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-sup 9271  df-inf 9272  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator