Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfiinf Structured version   Visualization version   GIF version

Theorem allbutfiinf 43903
Description: Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
allbutfiinf.z 𝑍 = (ℤ𝑀)
allbutfiinf.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
allbutfiinf.x (𝜑𝑋𝐴)
allbutfiinf.n 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
Assertion
Ref Expression
allbutfiinf (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Distinct variable groups:   𝐵,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)   𝐴(𝑚,𝑛)   𝐵(𝑚)   𝑀(𝑚,𝑛)   𝑁(𝑚,𝑛)

Proof of Theorem allbutfiinf
StepHypRef Expression
1 ssrab2 4073 . . 3 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ 𝑍
2 allbutfiinf.n . . . . 5 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
32a1i 11 . . . 4 (𝜑𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ))
4 allbutfiinf.z . . . . . . 7 𝑍 = (ℤ𝑀)
51, 4sseqtri 4014 . . . . . 6 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀)
65a1i 11 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀))
7 allbutfiinf.x . . . . . . 7 (𝜑𝑋𝐴)
8 allbutfiinf.a . . . . . . . 8 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
94, 8allbutfi 43876 . . . . . . 7 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
107, 9sylib 217 . . . . . 6 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
11 nfrab1 3450 . . . . . . . . 9 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
12 nfcv 2902 . . . . . . . . 9 𝑛
1311, 12nfne 3042 . . . . . . . 8 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅
14 rabid 3451 . . . . . . . . . . . 12 (𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1514bicomi 223 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) ↔ 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1615biimpi 215 . . . . . . . . . 10 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1716ne0d 4331 . . . . . . . . 9 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
1817ex 413 . . . . . . . 8 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
1913, 18rexlimi 3255 . . . . . . 7 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
2019a1i 11 . . . . . 6 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
2110, 20mpd 15 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
22 infssuzcl 12898 . . . . 5 (({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀) ∧ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅) → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
236, 21, 22syl2anc 584 . . . 4 (𝜑 → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
243, 23eqeltrd 2832 . . 3 (𝜑𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
251, 24sselid 3976 . 2 (𝜑𝑁𝑍)
26 nfcv 2902 . . . . . . . 8 𝑛
27 nfcv 2902 . . . . . . . 8 𝑛 <
2811, 26, 27nfinf 9459 . . . . . . 7 𝑛inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
292, 28nfcxfr 2900 . . . . . 6 𝑛𝑁
30 nfcv 2902 . . . . . 6 𝑛𝑍
31 nfcv 2902 . . . . . . . 8 𝑛
3231, 29nffv 6888 . . . . . . 7 𝑛(ℤ𝑁)
33 nfv 1917 . . . . . . 7 𝑛 𝑋𝐵
3432, 33nfralw 3307 . . . . . 6 𝑛𝑚 ∈ (ℤ𝑁)𝑋𝐵
35 nfcv 2902 . . . . . . 7 𝑚(ℤ𝑛)
36 nfcv 2902 . . . . . . . 8 𝑚
37 nfra1 3280 . . . . . . . . . . 11 𝑚𝑚 ∈ (ℤ𝑛)𝑋𝐵
38 nfcv 2902 . . . . . . . . . . 11 𝑚𝑍
3937, 38nfrabw 3468 . . . . . . . . . 10 𝑚{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
40 nfcv 2902 . . . . . . . . . 10 𝑚
41 nfcv 2902 . . . . . . . . . 10 𝑚 <
4239, 40, 41nfinf 9459 . . . . . . . . 9 𝑚inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
432, 42nfcxfr 2900 . . . . . . . 8 𝑚𝑁
4436, 43nffv 6888 . . . . . . 7 𝑚(ℤ𝑁)
45 fveq2 6878 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
4635, 44, 45raleqd 43597 . . . . . 6 (𝑛 = 𝑁 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4729, 30, 34, 46elrabf 3675 . . . . 5 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4847biimpi 215 . . . 4 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4948simprd 496 . . 3 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5024, 49syl 17 . 2 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5125, 50jca 512 1 (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  {crab 3431  wss 3944  c0 4318   ciun 4990   ciin 4991  cfv 6532  infcinf 9418  cr 11091   < clt 11230  cuz 12804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-n0 12455  df-z 12541  df-uz 12805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator