| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r19.36vf | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of one direction of 19.36 2231. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| r19.36vf.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| r19.36vf | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 3089 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.36vf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | idd 24 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜓 → 𝜓)) | |
| 4 | 2, 3 | rexlimi 3238 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 → 𝜓) |
| 5 | 4 | imim2i 16 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: iinssf 45139 |
| Copyright terms: Public domain | W3C validator |