Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssf Structured version   Visualization version   GIF version

Theorem iinssf 42687
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
iinssf.1 𝑥𝐶
Assertion
Ref Expression
iinssf (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)

Proof of Theorem iinssf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4929 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3438 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 ssel 3914 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
43reximi 3178 . . . 4 (∃𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
5 iinssf.1 . . . . . 6 𝑥𝐶
65nfcri 2894 . . . . 5 𝑥 𝑦𝐶
76r19.36vf 42685 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
84, 7syl 17 . . 3 (∃𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
92, 8syl5bi 241 . 2 (∃𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦𝐶))
109ssrdv 3927 1 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wnfc 2887  wral 3064  wrex 3065  Vcvv 3432  wss 3887   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iin 4927
This theorem is referenced by:  iinssdf  42688
  Copyright terms: Public domain W3C validator