Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssf Structured version   Visualization version   GIF version

Theorem iinssf 45139
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
iinssf.1 𝑥𝐶
Assertion
Ref Expression
iinssf (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)

Proof of Theorem iinssf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4963 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3455 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 ssel 3943 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
43reximi 3068 . . . 4 (∃𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
5 iinssf.1 . . . . . 6 𝑥𝐶
65nfcri 2884 . . . . 5 𝑥 𝑦𝐶
76r19.36vf 45137 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
84, 7syl 17 . . 3 (∃𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
92, 8biimtrid 242 . 2 (∃𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦𝐶))
109ssrdv 3955 1 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wnfc 2877  wral 3045  wrex 3054  Vcvv 3450  wss 3917   ciin 4959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3934  df-iin 4961
This theorem is referenced by:  iinssdf  45140  iinss2d  45158
  Copyright terms: Public domain W3C validator