![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssf | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iinssf.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
iinssf | ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3417 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | eliin 4745 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | ssel 3821 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
5 | 4 | reximi 3219 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
6 | nfcv 2969 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
7 | iinssf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
8 | 6, 7 | nfel 2982 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
9 | 8 | r19.36vf 40136 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
10 | 5, 9 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
11 | 3, 10 | syl5bi 234 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶)) |
12 | 11 | ssrdv 3833 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2166 Ⅎwnfc 2956 ∀wral 3117 ∃wrex 3118 Vcvv 3414 ⊆ wss 3798 ∩ ciin 4741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-in 3805 df-ss 3812 df-iin 4743 |
This theorem is referenced by: iinssdf 40140 |
Copyright terms: Public domain | W3C validator |