MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimda Structured version   Visualization version   GIF version

Theorem ralimda 3431
Description: Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralimda.1 𝑥𝜑
ralimda.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralimda (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralimda
StepHypRef Expression
1 ralimda.1 . . . 4 𝑥𝜑
2 nfra1 3144 . . . 4 𝑥𝑥𝐴 𝜓
31, 2nfan 1902 . . 3 𝑥(𝜑 ∧ ∀𝑥𝐴 𝜓)
4 id 22 . . . . 5 ((𝜑𝑥𝐴) → (𝜑𝑥𝐴))
54adantlr 712 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ 𝑥𝐴) → (𝜑𝑥𝐴))
6 rspa 3132 . . . . 5 ((∀𝑥𝐴 𝜓𝑥𝐴) → 𝜓)
76adantll 711 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ 𝑥𝐴) → 𝜓)
8 ralimda.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
95, 7, 8sylc 65 . . 3 (((𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ 𝑥𝐴) → 𝜒)
103, 9ralrimia 3430 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 𝜒)
1110ex 413 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by:  xlimmnfvlem1  43373  xlimmnfvlem2  43374  xlimpnfvlem1  43377  xlimpnfvlem2  43378
  Copyright terms: Public domain W3C validator