Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimda | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ralimda.1 | ⊢ Ⅎ𝑥𝜑 |
ralimda.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimda | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimda.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nfra1 3144 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜓 | |
3 | 1, 2 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) |
4 | id 22 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜑 ∧ 𝑥 ∈ 𝐴)) | |
5 | 4 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ∧ 𝑥 ∈ 𝐴)) |
6 | rspa 3132 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
7 | 6 | adantll 711 | . . . 4 ⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) → 𝜓) |
8 | ralimda.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
9 | 5, 7, 8 | sylc 65 | . . 3 ⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) → 𝜒) |
10 | 3, 9 | ralrimia 3430 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
11 | 10 | ex 413 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-ral 3069 |
This theorem is referenced by: xlimmnfvlem1 43373 xlimmnfvlem2 43374 xlimpnfvlem1 43377 xlimpnfvlem2 43378 |
Copyright terms: Public domain | W3C validator |