| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 1, 3 | ralrimi 3233 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: fompt 7072 ss2iundf 43642 ismnushort 44284 modelaxreplem3 44964 ssrabdf 45103 iunssdf 45144 rnmptssd 45184 dmmptdff 45211 axccd 45217 dmmptdf2 45221 rnmptbd2lem 45236 rnmptssdf 45242 rnmptbdlem 45243 ralrnmpt3 45247 rnmptssbi 45248 fconst7 45252 fmptdff 45259 rnmptssdff 45263 infleinf2 45404 unb2ltle 45405 uzublem 45420 cvgcaule 45481 climinf3 45708 limsupequzlem 45714 limsupre3uzlem 45727 climisp 45738 climrescn 45740 climxrrelem 45741 climxrre 45742 climxlim2lem 45837 dvnprodlem1 45938 saliunclf 46314 meaiuninc3v 46476 fsupdm 46834 finfdm 46838 iinfssc 49040 iinfsubc 49041 |
| Copyright terms: Public domain | W3C validator |