![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 1, 3 | ralrimi 3254 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1779 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-nf 1780 df-ral 3059 |
This theorem is referenced by: fompt 7137 ss2iundf 43648 ismnushort 44296 modelaxreplem3 44944 ssrabdf 45054 iunssdf 45098 rnmptssd 45138 dmmptdff 45165 axccd 45171 dmmptdf2 45175 mpteq12daOLD 45186 rnmptbd2lem 45192 rnmptssdf 45198 rnmptbdlem 45199 ralrnmpt3 45203 rnmptssbi 45205 fconst7 45209 fmptdff 45216 rnmptssdff 45220 infleinf2 45363 unb2ltle 45364 uzublem 45379 cvgcaule 45441 climinf3 45671 limsupequzlem 45677 limsupre3uzlem 45690 climisp 45701 climrescn 45703 climxrrelem 45704 climxrre 45705 climxlim2lem 45800 dvnprodlem1 45901 saliunclf 46277 meaiuninc3v 46439 fsupdm 46797 finfdm 46801 |
Copyright terms: Public domain | W3C validator |