MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3430
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 413 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3141 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by:  ralimda  3431  ismnushort  41919  rnmptssd  42735  dmmptdf  42763  axccd  42768  dmmptdf2  42776  mpteq12daOLD  42787  rnmptbd2lem  42794  rnmptssdf  42800  rnmptbdlem  42801  ralrnmpt3  42805  rnmptssbi  42807  fconst7  42812  infleinf2  42954  unb2ltle  42955  uzublem  42970  climinf3  43257  limsupequzlem  43263  limsupre3uzlem  43276  climisp  43287  climrescn  43289  climxrrelem  43290  climxrre  43291  climxlim2lem  43386  meaiuninc3v  44022
  Copyright terms: Public domain W3C validator