Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 1, 3 | ralrimi 3141 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1789 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-nf 1790 df-ral 3070 |
This theorem is referenced by: ralimda 3429 ismnushort 41872 rnmptssd 42688 dmmptdf 42716 axccd 42721 dmmptdf2 42729 mpteq12daOLD 42740 rnmptbd2lem 42747 rnmptssdf 42753 rnmptbdlem 42754 ralrnmpt3 42758 rnmptssbi 42760 fconst7 42765 infleinf2 42908 unb2ltle 42909 uzublem 42924 climinf3 43211 limsupequzlem 43217 limsupre3uzlem 43230 climisp 43241 climrescn 43243 climxrrelem 43244 climxrre 43245 climxlim2lem 43340 meaiuninc3v 43976 |
Copyright terms: Public domain | W3C validator |