![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 1, 3 | ralrimi 3263 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-ral 3068 |
This theorem is referenced by: fompt 7152 ss2iundf 43621 ismnushort 44270 ssrabdf 45017 iunssdf 45061 rnmptssd 45103 dmmptdff 45130 axccd 45136 dmmptdf2 45140 mpteq12daOLD 45151 rnmptbd2lem 45157 rnmptssdf 45163 rnmptbdlem 45164 ralrnmpt3 45168 rnmptssbi 45170 fconst7 45174 fmptdff 45181 rnmptssdff 45185 infleinf2 45329 unb2ltle 45330 uzublem 45345 cvgcaule 45407 climinf3 45637 limsupequzlem 45643 limsupre3uzlem 45656 climisp 45667 climrescn 45669 climxrrelem 45670 climxrre 45671 climxlim2lem 45766 saliunclf 46243 meaiuninc3v 46405 fsupdm 46763 finfdm 46767 |
Copyright terms: Public domain | W3C validator |