MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3420
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3139 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1787  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-ral 3068
This theorem is referenced by:  ralimda  3421  ismnushort  41808  rnmptssd  42624  dmmptdf  42652  axccd  42657  dmmptdf2  42665  mpteq12daOLD  42676  rnmptbd2lem  42683  rnmptssdf  42689  rnmptbdlem  42690  ralrnmpt3  42694  rnmptssbi  42696  fconst7  42701  infleinf2  42844  unb2ltle  42845  uzublem  42860  climinf3  43147  limsupequzlem  43153  limsupre3uzlem  43166  climisp  43177  climrescn  43179  climxrrelem  43180  climxrre  43181  climxlim2lem  43276  meaiuninc3v  43912
  Copyright terms: Public domain W3C validator