| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 1, 3 | ralrimi 3233 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: fompt 7072 ss2iundf 43641 ismnushort 44283 modelaxreplem3 44963 ssrabdf 45102 iunssdf 45143 rnmptssd 45183 dmmptdff 45210 axccd 45216 dmmptdf2 45220 rnmptbd2lem 45235 rnmptssdf 45241 rnmptbdlem 45242 ralrnmpt3 45246 rnmptssbi 45247 fconst7 45251 fmptdff 45258 rnmptssdff 45262 infleinf2 45403 unb2ltle 45404 uzublem 45419 cvgcaule 45480 climinf3 45707 limsupequzlem 45713 limsupre3uzlem 45726 climisp 45737 climrescn 45739 climxrrelem 45740 climxrre 45741 climxlim2lem 45836 dvnprodlem1 45937 saliunclf 46313 meaiuninc3v 46475 fsupdm 46833 finfdm 46837 iinfssc 49039 iinfsubc 49040 |
| Copyright terms: Public domain | W3C validator |