MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3255
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3254 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1779  wcel 2105  wral 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-12 2174
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-nf 1780  df-ral 3059
This theorem is referenced by:  fompt  7137  ss2iundf  43648  ismnushort  44296  modelaxreplem3  44944  ssrabdf  45054  iunssdf  45098  rnmptssd  45138  dmmptdff  45165  axccd  45171  dmmptdf2  45175  mpteq12daOLD  45186  rnmptbd2lem  45192  rnmptssdf  45198  rnmptbdlem  45199  ralrnmpt3  45203  rnmptssbi  45205  fconst7  45209  fmptdff  45216  rnmptssdff  45220  infleinf2  45363  unb2ltle  45364  uzublem  45379  cvgcaule  45441  climinf3  45671  limsupequzlem  45677  limsupre3uzlem  45690  climisp  45701  climrescn  45703  climxrrelem  45704  climxrre  45705  climxlim2lem  45800  dvnprodlem1  45901  saliunclf  46277  meaiuninc3v  46439  fsupdm  46797  finfdm  46801
  Copyright terms: Public domain W3C validator