MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3237
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3236 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3046
This theorem is referenced by:  fompt  7093  ss2iundf  43655  ismnushort  44297  modelaxreplem3  44977  ssrabdf  45116  iunssdf  45157  rnmptssd  45197  dmmptdff  45224  axccd  45230  dmmptdf2  45234  rnmptbd2lem  45249  rnmptssdf  45255  rnmptbdlem  45256  ralrnmpt3  45260  rnmptssbi  45261  fconst7  45265  fmptdff  45272  rnmptssdff  45276  infleinf2  45417  unb2ltle  45418  uzublem  45433  cvgcaule  45494  climinf3  45721  limsupequzlem  45727  limsupre3uzlem  45740  climisp  45751  climrescn  45753  climxrrelem  45754  climxrre  45755  climxlim2lem  45850  dvnprodlem1  45951  saliunclf  46327  meaiuninc3v  46489  fsupdm  46847  finfdm  46851  iinfssc  49050  iinfsubc  49051
  Copyright terms: Public domain W3C validator