MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3228
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3227 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  fompt  7052  ss2iundf  43652  ismnushort  44294  modelaxreplem3  44974  ssrabdf  45113  iunssdf  45154  rnmptssd  45194  dmmptdff  45221  axccd  45227  dmmptdf2  45231  rnmptbd2lem  45246  rnmptssdf  45252  rnmptbdlem  45253  ralrnmpt3  45257  rnmptssbi  45258  fconst7  45262  fmptdff  45269  rnmptssdff  45273  infleinf2  45413  unb2ltle  45414  uzublem  45429  cvgcaule  45490  climinf3  45717  limsupequzlem  45723  limsupre3uzlem  45736  climisp  45747  climrescn  45749  climxrrelem  45750  climxrre  45751  climxlim2lem  45846  dvnprodlem1  45947  saliunclf  46323  meaiuninc3v  46485  fsupdm  46843  finfdm  46847  iinfssc  49062  iinfsubc  49063
  Copyright terms: Public domain W3C validator