| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 1, 3 | ralrimi 3236 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3046 |
| This theorem is referenced by: fompt 7093 ss2iundf 43655 ismnushort 44297 modelaxreplem3 44977 ssrabdf 45116 iunssdf 45157 rnmptssd 45197 dmmptdff 45224 axccd 45230 dmmptdf2 45234 rnmptbd2lem 45249 rnmptssdf 45255 rnmptbdlem 45256 ralrnmpt3 45260 rnmptssbi 45261 fconst7 45265 fmptdff 45272 rnmptssdff 45276 infleinf2 45417 unb2ltle 45418 uzublem 45433 cvgcaule 45494 climinf3 45721 limsupequzlem 45727 limsupre3uzlem 45740 climisp 45751 climrescn 45753 climxrrelem 45754 climxrre 45755 climxlim2lem 45850 dvnprodlem1 45951 saliunclf 46327 meaiuninc3v 46489 fsupdm 46847 finfdm 46851 iinfssc 49050 iinfsubc 49051 |
| Copyright terms: Public domain | W3C validator |