| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 1, 3 | ralrimi 3230 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 |
| This theorem is referenced by: fompt 7051 ss2iundf 43751 ismnushort 44393 modelaxreplem3 45072 ssrabdf 45211 iunssdf 45252 rnmptssd 45292 dmmptdff 45319 axccd 45325 dmmptdf2 45329 rnmptbd2lem 45344 rnmptssdf 45350 rnmptbdlem 45351 ralrnmpt3 45355 rnmptssbi 45356 fconst7 45360 fmptdff 45367 rnmptssdff 45371 infleinf2 45511 unb2ltle 45512 uzublem 45527 cvgcaule 45588 climinf3 45813 limsupequzlem 45819 limsupre3uzlem 45832 climisp 45843 climrescn 45845 climxrrelem 45846 climxrre 45847 climxlim2lem 45942 dvnprodlem1 46043 saliunclf 46419 meaiuninc3v 46581 fsupdm 46939 finfdm 46943 iinfssc 49157 iinfsubc 49158 |
| Copyright terms: Public domain | W3C validator |