MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3241
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3240 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2108  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3052
This theorem is referenced by:  fompt  7108  ss2iundf  43683  ismnushort  44325  modelaxreplem3  45005  ssrabdf  45139  iunssdf  45180  rnmptssd  45220  dmmptdff  45247  axccd  45253  dmmptdf2  45257  rnmptbd2lem  45272  rnmptssdf  45278  rnmptbdlem  45279  ralrnmpt3  45283  rnmptssbi  45284  fconst7  45288  fmptdff  45295  rnmptssdff  45299  infleinf2  45441  unb2ltle  45442  uzublem  45457  cvgcaule  45518  climinf3  45745  limsupequzlem  45751  limsupre3uzlem  45764  climisp  45775  climrescn  45777  climxrrelem  45778  climxrre  45779  climxlim2lem  45874  dvnprodlem1  45975  saliunclf  46351  meaiuninc3v  46513  fsupdm  46871  finfdm  46875  iinfssc  49024  iinfsubc  49025
  Copyright terms: Public domain W3C validator