MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3234
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3233 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  fompt  7072  ss2iundf  43642  ismnushort  44284  modelaxreplem3  44964  ssrabdf  45103  iunssdf  45144  rnmptssd  45184  dmmptdff  45211  axccd  45217  dmmptdf2  45221  rnmptbd2lem  45236  rnmptssdf  45242  rnmptbdlem  45243  ralrnmpt3  45247  rnmptssbi  45248  fconst7  45252  fmptdff  45259  rnmptssdff  45263  infleinf2  45404  unb2ltle  45405  uzublem  45420  cvgcaule  45481  climinf3  45708  limsupequzlem  45714  limsupre3uzlem  45727  climisp  45738  climrescn  45740  climxrrelem  45741  climxrre  45742  climxlim2lem  45837  dvnprodlem1  45938  saliunclf  46314  meaiuninc3v  46476  fsupdm  46834  finfdm  46838  iinfssc  49040  iinfsubc  49041
  Copyright terms: Public domain W3C validator