Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 413 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 1, 3 | ralrimi 3141 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 |
This theorem is referenced by: ralimda 3431 ismnushort 41919 rnmptssd 42735 dmmptdf 42763 axccd 42768 dmmptdf2 42776 mpteq12daOLD 42787 rnmptbd2lem 42794 rnmptssdf 42800 rnmptbdlem 42801 ralrnmpt3 42805 rnmptssbi 42807 fconst7 42812 infleinf2 42954 unb2ltle 42955 uzublem 42970 climinf3 43257 limsupequzlem 43263 limsupre3uzlem 43276 climisp 43287 climrescn 43289 climxrrelem 43290 climxrre 43291 climxlim2lem 43386 meaiuninc3v 44022 |
Copyright terms: Public domain | W3C validator |