MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3234
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3233 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  fompt  7072  ss2iundf  43641  ismnushort  44283  modelaxreplem3  44963  ssrabdf  45102  iunssdf  45143  rnmptssd  45183  dmmptdff  45210  axccd  45216  dmmptdf2  45220  rnmptbd2lem  45235  rnmptssdf  45241  rnmptbdlem  45242  ralrnmpt3  45246  rnmptssbi  45247  fconst7  45251  fmptdff  45258  rnmptssdff  45262  infleinf2  45403  unb2ltle  45404  uzublem  45419  cvgcaule  45480  climinf3  45707  limsupequzlem  45713  limsupre3uzlem  45726  climisp  45737  climrescn  45739  climxrrelem  45740  climxrre  45741  climxlim2lem  45836  dvnprodlem1  45937  saliunclf  46313  meaiuninc3v  46475  fsupdm  46833  finfdm  46837  iinfssc  49039  iinfsubc  49040
  Copyright terms: Public domain W3C validator