Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 1, 3 | ralrimi 3139 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-ral 3068 |
This theorem is referenced by: ralimda 3421 ismnushort 41808 rnmptssd 42624 dmmptdf 42652 axccd 42657 dmmptdf2 42665 mpteq12daOLD 42676 rnmptbd2lem 42683 rnmptssdf 42689 rnmptbdlem 42690 ralrnmpt3 42694 rnmptssbi 42696 fconst7 42701 infleinf2 42844 unb2ltle 42845 uzublem 42860 climinf3 43147 limsupequzlem 43153 limsupre3uzlem 43166 climisp 43177 climrescn 43179 climxrrelem 43180 climxrre 43181 climxlim2lem 43276 meaiuninc3v 43912 |
Copyright terms: Public domain | W3C validator |