MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimia Structured version   Visualization version   GIF version

Theorem ralrimia 3256
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralrimia.1 𝑥𝜑
ralrimia.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
ralrimia (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimia
StepHypRef Expression
1 ralrimia.1 . 2 𝑥𝜑
2 ralrimia.2 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32ex 414 . 2 (𝜑 → (𝑥𝐴𝜓))
41, 3ralrimi 3255 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wnf 1786  wcel 2107  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787  df-ral 3063
This theorem is referenced by:  ss2iundf  42410  ismnushort  43060  ssrabdf  43804  iunssdf  43850  rnmptssd  43895  dmmptdff  43922  axccd  43928  dmmptdf2  43935  mpteq12daOLD  43946  rnmptbd2lem  43952  rnmptssdf  43958  rnmptbdlem  43959  ralrnmpt3  43963  rnmptssbi  43965  fconst7  43969  fmptdff  43976  rnmptssdff  43980  infleinf2  44124  unb2ltle  44125  uzublem  44140  cvgcaule  44202  climinf3  44432  limsupequzlem  44438  limsupre3uzlem  44451  climisp  44462  climrescn  44464  climxrrelem  44465  climxrre  44466  climxlim2lem  44561  saliunclf  45038  meaiuninc3v  45200  fsupdm  45558  finfdm  45562
  Copyright terms: Public domain W3C validator