| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 1, 3 | ralrimi 3227 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: fompt 7052 ss2iundf 43652 ismnushort 44294 modelaxreplem3 44974 ssrabdf 45113 iunssdf 45154 rnmptssd 45194 dmmptdff 45221 axccd 45227 dmmptdf2 45231 rnmptbd2lem 45246 rnmptssdf 45252 rnmptbdlem 45253 ralrnmpt3 45257 rnmptssbi 45258 fconst7 45262 fmptdff 45269 rnmptssdff 45273 infleinf2 45413 unb2ltle 45414 uzublem 45429 cvgcaule 45490 climinf3 45717 limsupequzlem 45723 limsupre3uzlem 45736 climisp 45747 climrescn 45749 climxrrelem 45750 climxrre 45751 climxlim2lem 45846 dvnprodlem1 45947 saliunclf 46323 meaiuninc3v 46485 fsupdm 46843 finfdm 46847 iinfssc 49062 iinfsubc 49063 |
| Copyright terms: Public domain | W3C validator |