| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimia | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralrimia.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimia.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimia | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimia.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimia.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 1, 3 | ralrimi 3240 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3052 |
| This theorem is referenced by: fompt 7108 ss2iundf 43683 ismnushort 44325 modelaxreplem3 45005 ssrabdf 45139 iunssdf 45180 rnmptssd 45220 dmmptdff 45247 axccd 45253 dmmptdf2 45257 rnmptbd2lem 45272 rnmptssdf 45278 rnmptbdlem 45279 ralrnmpt3 45283 rnmptssbi 45284 fconst7 45288 fmptdff 45295 rnmptssdff 45299 infleinf2 45441 unb2ltle 45442 uzublem 45457 cvgcaule 45518 climinf3 45745 limsupequzlem 45751 limsupre3uzlem 45764 climisp 45775 climrescn 45777 climxrrelem 45778 climxrre 45779 climxlim2lem 45874 dvnprodlem1 45975 saliunclf 46351 meaiuninc3v 46513 fsupdm 46871 finfdm 46875 iinfssc 49024 iinfsubc 49025 |
| Copyright terms: Public domain | W3C validator |