| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | icomnfordt 23225 | . . . . . 6
⊢
(-∞[,)𝑋)
∈ (ordTop‘ ≤ ) | 
| 2 | 1 | a1i 11 | . . . . 5
⊢ (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤
)) | 
| 3 |  | xlimmnfvlem1.c | . . . . . . . 8
⊢ (𝜑 → 𝐹~~>*-∞) | 
| 4 |  | df-xlim 45839 | . . . . . . . . 9
⊢ ~~>* =
(⇝𝑡‘(ordTop‘ ≤ )) | 
| 5 | 4 | breqi 5148 | . . . . . . . 8
⊢ (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞) | 
| 6 | 3, 5 | sylib 218 | . . . . . . 7
⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞) | 
| 7 |  | nfcv 2904 | . . . . . . . 8
⊢
Ⅎ𝑘𝐹 | 
| 8 |  | letopon 23214 | . . . . . . . . 9
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘ℝ*) | 
| 9 | 8 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → (ordTop‘ ≤ )
∈ (TopOn‘ℝ*)) | 
| 10 | 7, 9 | lmbr3 45767 | . . . . . . 7
⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞ ↔ (𝐹 ∈
(ℝ* ↑pm ℂ) ∧ -∞ ∈
ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | 
| 11 | 6, 10 | mpbid 232 | . . . . . 6
⊢ (𝜑 → (𝐹 ∈ (ℝ*
↑pm ℂ) ∧ -∞ ∈ ℝ* ∧
∀𝑢 ∈
(ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) | 
| 12 | 11 | simp3d 1144 | . . . . 5
⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 13 | 2, 12 | jca 511 | . . . 4
⊢ (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ )
∧ ∀𝑢 ∈
(ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) | 
| 14 | 11 | simp2d 1143 | . . . . 5
⊢ (𝜑 → -∞ ∈
ℝ*) | 
| 15 |  | xlimmnfvlem1.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 16 | 15 | rexrd 11312 | . . . . 5
⊢ (𝜑 → 𝑋 ∈
ℝ*) | 
| 17 | 15 | mnfltd 13167 | . . . . 5
⊢ (𝜑 → -∞ < 𝑋) | 
| 18 |  | lbico1 13442 | . . . . 5
⊢
((-∞ ∈ ℝ* ∧ 𝑋 ∈ ℝ* ∧ -∞
< 𝑋) → -∞
∈ (-∞[,)𝑋)) | 
| 19 | 14, 16, 17, 18 | syl3anc 1372 | . . . 4
⊢ (𝜑 → -∞ ∈
(-∞[,)𝑋)) | 
| 20 |  | eleq2 2829 | . . . . . 6
⊢ (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋))) | 
| 21 |  | eleq2 2829 | . . . . . . . . 9
⊢ (𝑢 = (-∞[,)𝑋) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) | 
| 22 | 21 | anbi2d 630 | . . . . . . . 8
⊢ (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) | 
| 23 | 22 | ralbidv 3177 | . . . . . . 7
⊢ (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) | 
| 24 | 23 | rexbidv 3178 | . . . . . 6
⊢ (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) | 
| 25 | 20, 24 | imbi12d 344 | . . . . 5
⊢ (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))))) | 
| 26 | 25 | rspcva 3619 | . . . 4
⊢
(((-∞[,)𝑋)
∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) | 
| 27 | 13, 19, 26 | sylc 65 | . . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) | 
| 28 |  | nfv 1913 | . . . 4
⊢
Ⅎ𝑗𝜑 | 
| 29 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑘𝜑 | 
| 30 |  | xlimmnfvlem1.f | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | 
| 31 | 30 | ffdmd 6765 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ*) | 
| 32 | 31 | ffvelcdmda 7103 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈
ℝ*) | 
| 33 | 32 | adantrr 717 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ∈
ℝ*) | 
| 34 | 16 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈
ℝ*) | 
| 35 | 14 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈
ℝ*) | 
| 36 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ∈ (-∞[,)𝑋)) | 
| 37 | 35, 34, 36 | icoltubd 45563 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) < 𝑋) | 
| 38 | 33, 34, 37 | xrltled 13193 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ≤ 𝑋) | 
| 39 | 38 | ex 412 | . . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → (𝐹‘𝑘) ≤ 𝑋)) | 
| 40 | 39 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → (𝐹‘𝑘) ≤ 𝑋)) | 
| 41 | 29, 40 | ralimdaa 3259 | . . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) | 
| 42 | 41 | a1d 25 | . . . 4
⊢ (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋))) | 
| 43 | 28, 42 | reximdai 3260 | . . 3
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) | 
| 44 | 27, 43 | mpd 15 | . 2
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) | 
| 45 |  | xlimmnfvlem1.m | . . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 46 |  | xlimmnfvlem1.z | . . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 47 | 46 | rexuz3 15388 | . . 3
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) | 
| 48 | 45, 47 | syl 17 | . 2
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) | 
| 49 | 44, 48 | mpbird 257 | 1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) |