| Step | Hyp | Ref
| Expression |
| 1 | | icomnfordt 23159 |
. . . . . 6
⊢
(-∞[,)𝑋)
∈ (ordTop‘ ≤ ) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤
)) |
| 3 | | xlimmnfvlem1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐹~~>*-∞) |
| 4 | | df-xlim 45815 |
. . . . . . . . 9
⊢ ~~>* =
(⇝𝑡‘(ordTop‘ ≤ )) |
| 5 | 4 | breqi 5130 |
. . . . . . . 8
⊢ (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞) |
| 6 | 3, 5 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞) |
| 7 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑘𝐹 |
| 8 | | letopon 23148 |
. . . . . . . . 9
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘ℝ*) |
| 9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘ ≤ )
∈ (TopOn‘ℝ*)) |
| 10 | 7, 9 | lmbr3 45743 |
. . . . . . 7
⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞ ↔ (𝐹 ∈
(ℝ* ↑pm ℂ) ∧ -∞ ∈
ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 11 | 6, 10 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (ℝ*
↑pm ℂ) ∧ -∞ ∈ ℝ* ∧
∀𝑢 ∈
(ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 12 | 11 | simp3d 1144 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 13 | 2, 12 | jca 511 |
. . . 4
⊢ (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ )
∧ ∀𝑢 ∈
(ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 14 | 11 | simp2d 1143 |
. . . . 5
⊢ (𝜑 → -∞ ∈
ℝ*) |
| 15 | | xlimmnfvlem1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 16 | 15 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
| 17 | 15 | mnfltd 13145 |
. . . . 5
⊢ (𝜑 → -∞ < 𝑋) |
| 18 | | lbico1 13422 |
. . . . 5
⊢
((-∞ ∈ ℝ* ∧ 𝑋 ∈ ℝ* ∧ -∞
< 𝑋) → -∞
∈ (-∞[,)𝑋)) |
| 19 | 14, 16, 17, 18 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → -∞ ∈
(-∞[,)𝑋)) |
| 20 | | eleq2 2824 |
. . . . . 6
⊢ (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋))) |
| 21 | | eleq2 2824 |
. . . . . . . . 9
⊢ (𝑢 = (-∞[,)𝑋) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) |
| 22 | 21 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
| 23 | 22 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
| 24 | 23 | rexbidv 3165 |
. . . . . 6
⊢ (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
| 25 | 20, 24 | imbi12d 344 |
. . . . 5
⊢ (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))))) |
| 26 | 25 | rspcva 3604 |
. . . 4
⊢
(((-∞[,)𝑋)
∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
| 27 | 13, 19, 26 | sylc 65 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) |
| 28 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
| 29 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
| 30 | | xlimmnfvlem1.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 31 | 30 | ffdmd 6741 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ*) |
| 32 | 31 | ffvelcdmda 7079 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈
ℝ*) |
| 33 | 32 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ∈
ℝ*) |
| 34 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈
ℝ*) |
| 35 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈
ℝ*) |
| 36 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ∈ (-∞[,)𝑋)) |
| 37 | 35, 34, 36 | icoltubd 45541 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) < 𝑋) |
| 38 | 33, 34, 37 | xrltled 13171 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ≤ 𝑋) |
| 39 | 38 | ex 412 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → (𝐹‘𝑘) ≤ 𝑋)) |
| 40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → (𝐹‘𝑘) ≤ 𝑋)) |
| 41 | 29, 40 | ralimdaa 3247 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
| 42 | 41 | a1d 25 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋))) |
| 43 | 28, 42 | reximdai 3248 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
| 44 | 27, 43 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) |
| 45 | | xlimmnfvlem1.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 46 | | xlimmnfvlem1.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 47 | 46 | rexuz3 15372 |
. . 3
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
| 48 | 45, 47 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
| 49 | 44, 48 | mpbird 257 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) |