Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem1 45358
Description: Lemma for xlimmnfv 45360: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem1.z 𝑍 = (ℤ𝑀)
xlimmnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem1.c (𝜑𝐹~~>*-∞)
xlimmnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimmnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimmnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icomnfordt 23164 . . . . . 6 (-∞[,)𝑋) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤ ))
3 xlimmnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*-∞)
4 df-xlim 45345 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 5155 . . . . . . . 8 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
63, 5sylib 217 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7 nfcv 2891 . . . . . . . 8 𝑘𝐹
8 letopon 23153 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 45273 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 231 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1141 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 510 . . . 4 (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1411simp2d 1140 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
15 xlimmnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1615rexrd 11296 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1715mnfltd 13139 . . . . 5 (𝜑 → -∞ < 𝑋)
18 lbico1 13413 . . . . 5 ((-∞ ∈ ℝ*𝑋 ∈ ℝ* ∧ -∞ < 𝑋) → -∞ ∈ (-∞[,)𝑋))
1914, 16, 17, 18syl3anc 1368 . . . 4 (𝜑 → -∞ ∈ (-∞[,)𝑋))
20 eleq2 2814 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋)))
21 eleq2 2814 . . . . . . . . 9 (𝑢 = (-∞[,)𝑋) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (-∞[,)𝑋)))
2221anbi2d 628 . . . . . . . 8 (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2322ralbidv 3167 . . . . . . 7 (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2423rexbidv 3168 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2520, 24imbi12d 343 . . . . 5 (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))))
2625rspcva 3604 . . . 4 (((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))
28 nfv 1909 . . . 4 𝑗𝜑
29 nfv 1909 . . . . . 6 𝑘𝜑
30 xlimmnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3130ffdmd 6754 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3231ffvelcdmda 7093 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3332adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ ℝ*)
3416adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈ ℝ*)
3514adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈ ℝ*)
36 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ (-∞[,)𝑋))
3735, 34, 36icoltubd 45068 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) < 𝑋)
3833, 34, 37xrltled 13164 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ≤ 𝑋)
3938ex 411 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4039adantr 479 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4129, 40ralimdaa 3247 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)))
4328, 42reximdai 3248 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
45 xlimmnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimmnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 15331 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4944, 48mpbird 256 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  pm cpm 8846  cc 11138  cr 11139  -∞cmnf 11278  *cxr 11279   < clt 11280  cle 11281  cz 12591  cuz 12855  [,)cico 13361  ordTopcordt 17484  TopOnctopon 22856  𝑡clm 23174  ~~>*clsxlim 45344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-1o 8487  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-z 12592  df-uz 12856  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-topgen 17428  df-ordt 17486  df-ps 18561  df-tsr 18562  df-top 22840  df-topon 22857  df-bases 22893  df-lm 23177  df-xlim 45345
This theorem is referenced by:  xlimmnfv  45360
  Copyright terms: Public domain W3C validator