Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem1 45940
Description: Lemma for xlimmnfv 45942: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem1.z 𝑍 = (ℤ𝑀)
xlimmnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem1.c (𝜑𝐹~~>*-∞)
xlimmnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimmnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimmnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icomnfordt 23131 . . . . . 6 (-∞[,)𝑋) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤ ))
3 xlimmnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*-∞)
4 df-xlim 45927 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 5095 . . . . . . . 8 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
63, 5sylib 218 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7 nfcv 2894 . . . . . . . 8 𝑘𝐹
8 letopon 23120 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 45855 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 232 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1144 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 511 . . . 4 (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1411simp2d 1143 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
15 xlimmnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1615rexrd 11162 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1715mnfltd 13023 . . . . 5 (𝜑 → -∞ < 𝑋)
18 lbico1 13300 . . . . 5 ((-∞ ∈ ℝ*𝑋 ∈ ℝ* ∧ -∞ < 𝑋) → -∞ ∈ (-∞[,)𝑋))
1914, 16, 17, 18syl3anc 1373 . . . 4 (𝜑 → -∞ ∈ (-∞[,)𝑋))
20 eleq2 2820 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋)))
21 eleq2 2820 . . . . . . . . 9 (𝑢 = (-∞[,)𝑋) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (-∞[,)𝑋)))
2221anbi2d 630 . . . . . . . 8 (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2322ralbidv 3155 . . . . . . 7 (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2423rexbidv 3156 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2520, 24imbi12d 344 . . . . 5 (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))))
2625rspcva 3570 . . . 4 (((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))
28 nfv 1915 . . . 4 𝑗𝜑
29 nfv 1915 . . . . . 6 𝑘𝜑
30 xlimmnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3130ffdmd 6681 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3231ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3332adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ ℝ*)
3416adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈ ℝ*)
3514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈ ℝ*)
36 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ (-∞[,)𝑋))
3735, 34, 36icoltubd 45655 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) < 𝑋)
3833, 34, 37xrltled 13049 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ≤ 𝑋)
3938ex 412 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4039adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4129, 40ralimdaa 3233 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)))
4328, 42reximdai 3234 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
45 xlimmnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimmnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 15256 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4944, 48mpbird 257 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  dom cdm 5614  wf 6477  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11004  cr 11005  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  cz 12468  cuz 12732  [,)cico 13247  ordTopcordt 17403  TopOnctopon 22825  𝑡clm 23141  ~~>*clsxlim 45926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-z 12469  df-uz 12733  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22809  df-topon 22826  df-bases 22861  df-lm 23144  df-xlim 45927
This theorem is referenced by:  xlimmnfv  45942
  Copyright terms: Public domain W3C validator