Step | Hyp | Ref
| Expression |
1 | | icomnfordt 22367 |
. . . . . 6
⊢
(-∞[,)𝑋)
∈ (ordTop‘ ≤ ) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤
)) |
3 | | xlimmnfvlem1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐹~~>*-∞) |
4 | | df-xlim 43360 |
. . . . . . . . 9
⊢ ~~>* =
(⇝𝑡‘(ordTop‘ ≤ )) |
5 | 4 | breqi 5080 |
. . . . . . . 8
⊢ (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞) |
6 | 3, 5 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞) |
7 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝐹 |
8 | | letopon 22356 |
. . . . . . . . 9
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘ℝ*) |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘ ≤ )
∈ (TopOn‘ℝ*)) |
10 | 7, 9 | lmbr3 43288 |
. . . . . . 7
⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘
≤ ))-∞ ↔ (𝐹 ∈
(ℝ* ↑pm ℂ) ∧ -∞ ∈
ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
11 | 6, 10 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (ℝ*
↑pm ℂ) ∧ -∞ ∈ ℝ* ∧
∀𝑢 ∈
(ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
12 | 11 | simp3d 1143 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
13 | 2, 12 | jca 512 |
. . . 4
⊢ (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ )
∧ ∀𝑢 ∈
(ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
14 | 11 | simp2d 1142 |
. . . . 5
⊢ (𝜑 → -∞ ∈
ℝ*) |
15 | | xlimmnfvlem1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
16 | 15 | rexrd 11025 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
17 | 15 | mnfltd 12860 |
. . . . 5
⊢ (𝜑 → -∞ < 𝑋) |
18 | | lbico1 13133 |
. . . . 5
⊢
((-∞ ∈ ℝ* ∧ 𝑋 ∈ ℝ* ∧ -∞
< 𝑋) → -∞
∈ (-∞[,)𝑋)) |
19 | 14, 16, 17, 18 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → -∞ ∈
(-∞[,)𝑋)) |
20 | | eleq2 2827 |
. . . . . 6
⊢ (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋))) |
21 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑢 = (-∞[,)𝑋) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) |
22 | 21 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
23 | 22 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
24 | 23 | rexbidv 3226 |
. . . . . 6
⊢ (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
25 | 20, 24 | imbi12d 345 |
. . . . 5
⊢ (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))))) |
26 | 25 | rspcva 3559 |
. . . 4
⊢
(((-∞[,)𝑋)
∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)))) |
27 | 13, 19, 26 | sylc 65 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) |
28 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
29 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
30 | | xlimmnfvlem1.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
31 | 30 | ffdmd 6631 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ*) |
32 | 31 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈
ℝ*) |
33 | 32 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ∈
ℝ*) |
34 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈
ℝ*) |
35 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈
ℝ*) |
36 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ∈ (-∞[,)𝑋)) |
37 | 35, 34, 36 | icoltubd 43083 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) < 𝑋) |
38 | 33, 34, 37 | xrltled 12884 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋))) → (𝐹‘𝑘) ≤ 𝑋) |
39 | 38 | ex 413 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → (𝐹‘𝑘) ≤ 𝑋)) |
40 | 39 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → (𝐹‘𝑘) ≤ 𝑋)) |
41 | 29, 40 | ralimda 3431 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
42 | 41 | a1d 25 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋))) |
43 | 28, 42 | reximdai 3244 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
44 | 27, 43 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) |
45 | | xlimmnfvlem1.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
46 | | xlimmnfvlem1.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
47 | 46 | rexuz3 15060 |
. . 3
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
48 | 45, 47 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋)) |
49 | 44, 48 | mpbird 256 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) |