Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem1 42471
Description: Lemma for xlimmnfv 42473: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem1.z 𝑍 = (ℤ𝑀)
xlimmnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem1.c (𝜑𝐹~~>*-∞)
xlimmnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimmnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimmnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icomnfordt 21825 . . . . . 6 (-∞[,)𝑋) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (-∞[,)𝑋) ∈ (ordTop‘ ≤ ))
3 xlimmnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*-∞)
4 df-xlim 42458 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 5039 . . . . . . . 8 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
63, 5sylib 221 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7 nfcv 2958 . . . . . . . 8 𝑘𝐹
8 letopon 21814 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 42386 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 235 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1141 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 515 . . . 4 (𝜑 → ((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1411simp2d 1140 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
15 xlimmnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1615rexrd 10684 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1715mnfltd 12511 . . . . 5 (𝜑 → -∞ < 𝑋)
18 lbico1 12783 . . . . 5 ((-∞ ∈ ℝ*𝑋 ∈ ℝ* ∧ -∞ < 𝑋) → -∞ ∈ (-∞[,)𝑋))
1914, 16, 17, 18syl3anc 1368 . . . 4 (𝜑 → -∞ ∈ (-∞[,)𝑋))
20 eleq2 2881 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (-∞[,)𝑋)))
21 eleq2 2881 . . . . . . . . 9 (𝑢 = (-∞[,)𝑋) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (-∞[,)𝑋)))
2221anbi2d 631 . . . . . . . 8 (𝑢 = (-∞[,)𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2322ralbidv 3165 . . . . . . 7 (𝑢 = (-∞[,)𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2423rexbidv 3259 . . . . . 6 (𝑢 = (-∞[,)𝑋) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2520, 24imbi12d 348 . . . . 5 (𝑢 = (-∞[,)𝑋) → ((-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))))
2625rspcva 3572 . . . 4 (((-∞[,)𝑋) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (-∞ ∈ (-∞[,)𝑋) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)))
28 nfv 1915 . . . 4 𝑗𝜑
29 nfv 1915 . . . . . 6 𝑘𝜑
30 xlimmnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3130ffdmd 6515 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3231ffvelrnda 6832 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3332adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ ℝ*)
3416adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → 𝑋 ∈ ℝ*)
3514adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → -∞ ∈ ℝ*)
36 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ∈ (-∞[,)𝑋))
3735, 34, 36icoltubd 42179 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) < 𝑋)
3833, 34, 37xrltled 12535 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋))) → (𝐹𝑘) ≤ 𝑋)
3938ex 416 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4039adantr 484 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → (𝐹𝑘) ≤ 𝑋))
4129, 40ralimda 41771 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)))
4328, 42reximdai 3273 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (-∞[,)𝑋)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
45 xlimmnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimmnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 14704 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋))
4944, 48mpbird 260 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110   class class class wbr 5033  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  pm cpm 8394  cc 10528  cr 10529  -∞cmnf 10666  *cxr 10667   < clt 10668  cle 10669  cz 11973  cuz 12235  [,)cico 12732  ordTopcordt 16768  TopOnctopon 21519  𝑡clm 21835  ~~>*clsxlim 42457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-z 11974  df-uz 12236  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-topgen 16713  df-ordt 16770  df-ps 17806  df-tsr 17807  df-top 21503  df-topon 21520  df-bases 21555  df-lm 21838  df-xlim 42458
This theorem is referenced by:  xlimmnfv  42473
  Copyright terms: Public domain W3C validator